<h2>
Answer:</h2>
If a car is rounding a flat curve, it experiences a centripetal force that pulls it towards the center of the circle it is rotating in.
Now,
The centripetal force can be balanced by the centrifugal force caused due to the acceleration of the body at the high speed which counters the centripetal force and in turn <u>prevents the car from slipping down the curve.</u>
So,
If the car doesn't hit the gas then the <em><u>car will fall down from the curve</u></em> as the Centripetal force will exceed the Centrifugal force of the car.
However, if the car doesn't hit the brake then the <em><u>car will maintain it's position on the flat curve</u></em> track as the centrifugal force will counter the effect of centripetal force directed towards the center.
0.23 mm far apart are the second-order fringes for these two wavelengths on a screen 1.5 m away.
<h3>Given wavelengths 710nm and 660nm,0.65mm apart two slits, and a screen 1.5m away.</h3>
Position of n the order fringe = n λ D / d
for n = 2
position = 2 λ D / d
λ = 710 nm , D = 1.5m
d = .65 x 10⁻³
position 1 = 2 x 710 x 10⁻⁹ x 1.5 / .65 x 10⁻³
= 3276.92 x 10⁻⁶ m
= 3.276x 10⁻³ m
= 3.276mm .
For λ = 660 nm
position = 2 λ D / d
λ = 660 nm , D = 1.5 m
d = .65 x 10⁻³
position 2 = 2 x 660 x 10⁻⁹ x 1.5 / .65 x 10⁻³
= 3046.15 x 10⁻⁶ m
= 3.046 x 10⁻³ m
= 3.046 mm .
Difference between their position
= 3.276mm ₋ 3.046 mm
= 0.23 mm .
To know more about Fringes refer to: brainly.com/question/15649748
#SPJ4
As the water russhes toward the shore, it rises because it is pushing against it.<span />
Answer:
The balloon will continue to expand and eventually burst.
Explanation:
Simply, the reason for this is because the density of the atmosphere decreases gradually as you increase in altitude closer to space. This means that the air on the outside of the balloon can't provide enough pressure over the surface of the balloon in order to counteract the gas on the inside of the balloon from expanding.
Answer:
No
Explanation:
She will not be able to measure the length of her window accurately due to instrumental error from her choice of instrument. The elastic nature of her tape would alter the measurement because it will stretch as she is taking her readings, thus reducing the true measurement of the length of her window.
To measure the length of her window, she could use an inelastic tape rule or a metre rule. These instruments would eliminate instrumental error.