Solution :
Acceleration due to gravity of the earth, g 

Acceleration due to gravity at 1000 km depths is :




= 8.23 m/s
Acceleration due to gravity at 2000 km depths is :




= 6.73 m/s
Acceleration due to gravity at 3000 km depths is :



= 5.18 m/s
Acceleration due to gravity at 4000 km depths is :




= 3.64 m/s
Answer:
The articles appearing under "Milestones in Physics" will give an insight into special events or situations that have been decisive for the evolution of Physics
Answer:

cubic metre or 1e-9
Explanation:
•By division. Number of cubic millimetre divided(/) by 1000000000, equal(=): Number of cubic metre.
•By multiplication. 83 mm3(s) * 1.0E-9 = 8.3E-8 m3(s)
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m
The energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
<h3>Conservation of energy</h3>
The amount of energy lost due to air resistance while she was bouncing is determined from the principle of conservation of energy.
ΔE = P.E - Ux
ΔE = mgh - ¹/₂kx²
ΔE = (50)(9.8)(16) - ¹/₂(35)(16)²
ΔE = 3,360 J
Thus, the energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
Learn more about energy here: brainly.com/question/13881533
#SPJ1