Answer:
t = 5.89 s
Explanation:
To calculate the time, we need the radius of the pulley and the radius of the sphere which was not given in the question.
Let us assume that the radius of the pulley (
) = 0.4 m
Let the radius of the sphere (r) = 0.5 m
w = angular speed = 150 rev/min = (150 × 2π / 60) rad/s = 15.708 rad/s
Tension (T) = 20 N
mass (m) = 3 kg each


Substituting values:

Answer:
A is true
Explanation:
Other all are wrong I guess
Pupils dilate and constrict in order to allow an adequate amount of light to pass through the retina and vision. If there is not enough light and the pupils do not dilate, a small amount of light will pass to the retina and the vision will be damaged.
Answer:
Number of electrons, n = 6
Explanation:
Total charge in a single droplet, 
The measured charge of any single droplet, 
Let n is the number of excess electrons are contained within the drop. According to the quantization of charge :



n = 6
So, there are 6 electrons contained within the drop. Hence, this is the required solution.
<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>