Instead of asking this question go and study
The kinetic energy would be 53,775J:)
Ofcoure the elephante as the elephant has more weight
Complete Question:
Two 3.0µC charges lie on the x-axis, one at the origin and the other at 2.0m. A third point is located at 6.0m. What is the potential at this third point relative to infinity? (The value of k is 9.0*10^9 N.m^2/C^2)
Answer:
The potential due to these charges is 11250 V
Explanation:
Potential V is given as;
![V =\frac{Kq}{r}](https://tex.z-dn.net/?f=V%20%3D%5Cfrac%7BKq%7D%7Br%7D)
where;
K is coulomb's constant = 9x10⁹ N.m²/C²
r is the distance of the charge
q is the magnitude of the charge
The first charge located at the origin, is 6.0 m from the third charge; the potential at this point is:
![V =\frac{9X10^9 X3X10^{-6}}{6} =4500 V](https://tex.z-dn.net/?f=V%20%3D%5Cfrac%7B9X10%5E9%20X3X10%5E%7B-6%7D%7D%7B6%7D%20%3D4500%20V)
The second charge located at 2.0 m, is 4.0 m from the third charge; the potential at this point is:
![V =\frac{9X10^9 X3X10^{-6}}{4} =6750 V](https://tex.z-dn.net/?f=V%20%3D%5Cfrac%7B9X10%5E9%20X3X10%5E%7B-6%7D%7D%7B4%7D%20%3D6750%20V)
Total potential due to this charges = 4500 V + 6750 V = 11250 V
Answer:
Height of the tree is <u>9.6 cm</u>
Explanation:
We know that, Magnification of an image is written as follows.
![\left(\frac{H_{i}}{H_{o}}\right)=\left(\frac{D_{i}}{D_{o}}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cfrac%7BH_%7Bi%7D%7D%7BH_%7Bo%7D%7D%5Cright%29%3D%5Cleft%28%5Cfrac%7BD_%7Bi%7D%7D%7BD_%7Bo%7D%7D%5Cright%29)
Where,
![\begin{array}{l}{\mathrm{H}_{0}=\text { height of the object }} \\ {\mathrm{H}_{\mathrm{i}}=\text { height of the image }} \\ {\mathrm{D}_{0}=\text { distance of the object }} \\ {\mathrm{D}_{\mathrm{i}}=\text { distance of the image }}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B%5Cmathrm%7BH%7D_%7B0%7D%3D%5Ctext%20%7B%20height%20of%20the%20object%20%7D%7D%20%5C%5C%20%7B%5Cmathrm%7BH%7D_%7B%5Cmathrm%7Bi%7D%7D%3D%5Ctext%20%7B%20height%20of%20the%20image%20%7D%7D%20%5C%5C%20%7B%5Cmathrm%7BD%7D_%7B0%7D%3D%5Ctext%20%7B%20distance%20of%20the%20object%20%7D%7D%20%5C%5C%20%7B%5Cmathrm%7BD%7D_%7B%5Cmathrm%7Bi%7D%7D%3D%5Ctext%20%7B%20distance%20of%20the%20image%20%7D%7D%5Cend%7Barray%7D)
As per given question,
![\begin{array}{l}{\mathrm{H}_{1}=\text { height of the image }=\text { height of the image of the tree on screen }=16 \mathrm{cm}} \\ {\mathrm{D}_{0}=\text { distance of the object }=\text { distance of the tree from the pinhole }=6 \mathrm{cm}} \\ {D_{1}=\text { distance of the image }=\text { distance of the image from the pinhole }=10 \mathrm{cm}} \\ {\mathrm{H}_{0}=\text { height of the object }=\text { height of the tree }}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B%5Cmathrm%7BH%7D_%7B1%7D%3D%5Ctext%20%7B%20height%20of%20the%20image%20%7D%3D%5Ctext%20%7B%20height%20of%20the%20image%20of%20the%20tree%20on%20screen%20%7D%3D16%20%5Cmathrm%7Bcm%7D%7D%20%5C%5C%20%7B%5Cmathrm%7BD%7D_%7B0%7D%3D%5Ctext%20%7B%20distance%20of%20the%20object%20%7D%3D%5Ctext%20%7B%20distance%20of%20the%20tree%20from%20the%20pinhole%20%7D%3D6%20%5Cmathrm%7Bcm%7D%7D%20%5C%5C%20%7BD_%7B1%7D%3D%5Ctext%20%7B%20distance%20of%20the%20image%20%7D%3D%5Ctext%20%7B%20distance%20of%20the%20image%20from%20the%20pinhole%20%7D%3D10%20%5Cmathrm%7Bcm%7D%7D%20%5C%5C%20%7B%5Cmathrm%7BH%7D_%7B0%7D%3D%5Ctext%20%7B%20height%20of%20the%20object%20%7D%3D%5Ctext%20%7B%20height%20of%20the%20tree%20%7D%7D%5Cend%7Barray%7D)
Substitute the values in the above formula,
![\begin{array}{l}{\left(\frac{H_{i}}{H_{o}}\right)=\left(\frac{D_{i}}{D_{o}}\right)} \\ {\left(\frac{16}{H_{o}}\right)=\left(\frac{10}{6}\right)} \\ {\mathrm{H}_{\mathrm{o}}=\left(\frac{16 \times 6}{10}\right)} \\ {\mathrm{H}_{\mathrm{o}}=9.6 \mathrm{cm}}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B%5Cleft%28%5Cfrac%7BH_%7Bi%7D%7D%7BH_%7Bo%7D%7D%5Cright%29%3D%5Cleft%28%5Cfrac%7BD_%7Bi%7D%7D%7BD_%7Bo%7D%7D%5Cright%29%7D%20%5C%5C%20%7B%5Cleft%28%5Cfrac%7B16%7D%7BH_%7Bo%7D%7D%5Cright%29%3D%5Cleft%28%5Cfrac%7B10%7D%7B6%7D%5Cright%29%7D%20%5C%5C%20%7B%5Cmathrm%7BH%7D_%7B%5Cmathrm%7Bo%7D%7D%3D%5Cleft%28%5Cfrac%7B16%20%5Ctimes%206%7D%7B10%7D%5Cright%29%7D%20%5C%5C%20%7B%5Cmathrm%7BH%7D_%7B%5Cmathrm%7Bo%7D%7D%3D9.6%20%5Cmathrm%7Bcm%7D%7D%5Cend%7Barray%7D)
Height of the tree is 9.6 cm.