Answer:
Acceleration due to gravity will be 
Explanation:
We have given length of pendulum l = 55 cm = 0.55 m
It is given that pendulum completed 100 swings in 145 sec
So time taken by pendulum for 1 swing 
We have to find the acceleration due to gravity at that point
We know that time period of pendulum;um is given by

So 

Squaring both side


So acceleration due to gravity will be 
Answer:
F - M a force exerted by scales on student
M a = M (9.8 + 4.9) m/s^2 upwards chosen as positive
a = 1.5 g net acceleration of student due to force of scales
W =M g weight of student (actual weight)
Wapp = M 1.5 * g apparent weight (on scales) of student
Answer:
The acceleration will be 140 meter per second
Explanation:
Force F = mass m × acceleration a
If F = 42 N and m = 0.30 kg
Then acceleration a = F/m
a = 42/0.30
a = 140 m/s
Answer:
(a) g = 8.82158145
.
(b) 7699.990192m/s.
(c)5484.3301s = 1.5234 hours.(extremely fast).
Explanation:
(a) Strength of gravitational field 'g' by definition is
, here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.
r = 6721,000 meters, putting this value in above equation gives g = 8.82158145
.
(b) We have to essentially calculate centripetal acceleration that equals new 'g'.
here g is known, r is known and v is unknown.
plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.
(c) S = vT, here T is time period or time required to complete one full revolution.
S = earth's circumfrence , V is calculated in (B) T is unknown.
solving for unknown gives T = 5484.3301s = 1.5234hours.
Answer:
, it flows through your community's sanitary sewer system to a wastewater treatment facility.