Answer:
i would say that the answer would be B
Momentum = (mass) x (velocity)
Original momentum before the hit =
(0.16 kg) x (38 m/s) this way <==
= 6.08 kg-m/s this way <==
Momentum after the hit =
(0.16) x (44 m/s) that way ==>
= 7.04 kg-m/s that way ==>
Change in momentum = (6.08 + 7.04) = 13.12 kg-m/s that way ==> .
-----------------------------------------------
Change in momentum = impulse.
Impulse = (force) x (time the force lasted)
13.12 kg-m/s = (force) x (0.002 sec)
(13.12 kg-m/s) / (0.002 sec) = Force
6,560 kg-m/s² = 6,560 Newtons = Force
( about 1,475 pounds ! ! ! )
Answer:
100Kg.m/s
Explanation:
From the question, we obtained the following information:
M= Mass = 25kg
V = Velocity = 4m/s
Momentum =?
Momentum = MV = 25x4= 100Kg.m/s
Here's a formula that's simple and useful, and if you're really in
high school physics, I'd be surprised if you haven't see it before.
This one is so simple and useful that I'd suggest memorizing it,
so it's always in your toolbox.
This formula tells how far an object travels in how much time,
when it's accelerating:
Distance = (1/2 acceleration) x (Time²).
D = 1/2 A T²
For your student who dropped an object out of the window,
Distance = 19.6 m
Acceleration = gravity = 9.8 m/s²
D = 1/2 G T²
19.6 = 4.9 T²
Divide each side by 4.9 : 4 = T²
Square root each side: 2 = T
When an object is dropped in Earth gravity,
it takes 2 seconds to fall the first 19.6 meters.
Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:
If the maximum horizontal distance is known, we can solve the above equation for h:
The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:
h= 38.416 m
The end of the ramp is 38.416 m high