1 kPa = 7.5 mmHg so 7.0 mmHg / 7.5 mmHg x 1 kPa = .93 kPa
101.3 kPa = 1 atm so 10 kPa / 101.3 kPa x 1 atm = .0987 atm
1 kPa = 7.5 mmHg so 15 kPa x 7.5 mmHg / 1 kPa = 112.5 mmHg
<h3>Further explanation</h3>
Given
Reaction
H₂ (g) + I₂ (g) → 2HI(g)
Required
The equilibrium constant
Solution
The equilibrium constant is the value of the product in the equilibrium state of the substance in the right (product) divided by the substance in the left (reactant) with the exponents of each reaction coefficient
The equilibrium constant for reaction
pA + qB ⇒ mC + nD
![\large {\boxed {\bold {K ~ = ~ \frac {[C] ^ m [D] ^ n} {[A] ^ p [B] ^ q}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BK%20~%20%3D%20~%20%5Cfrac%20%7B%5BC%5D%20%5E%20m%20%5BD%5D%20%5E%20n%7D%20%7B%5BA%5D%20%5E%20p%20%5BB%5D%20%5E%20q%7D%7D%7D%7D)
So for the above reaction :
![\tt K=\dfrac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=%5Ctt%20K%3D%5Cdfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
Answer:
(b) Trigonal planar
Explanation:
The molecular geometry is the one that stabilizes better the bonds and the free electron pairs. If the molecule is nonpolar (overall dipole moment zero), so, there's no free electron pairs at the central atom. So, the molecule has the central atom A surrounded by three atoms of B, which is the trigonal planar geometry.