Air has mass and density, and. cold air is denser than warm air.
The same amount of water as oil air
Solid wood is a term most commonly used to distinguish between ordinary lumber and engineered wood, but it also refers to structures that do not have hollow spaces. Engineered wood products are manufactured by binding together wood strands, fibers, or veneers with adhesives to form a composite material.
Woof. Hope it helps!!! :) ....Reason*
In is a lot easier because it uses 10s.
First, isotopes <u>are the atoms of a single element whose nuclei have a different number of neutrons</u>, and therefore, differ in mass numbers. You should know that atoms are formed by a nucleus that has a small size and is made up of protons and neutrons. The nucleus is surrounded by a cloud of electrons, which are found in a region of the atom called the cortex.
The mass number, represented as A, <u>is the sum of the number of protons and neutrons in the nucleus</u>. On the other hand, the atomic number (Z) is <u>the number of protons that exist in the nucleus.
</u>
The isotopes of an element X are represented as follows,
<em>(see first attached picture)</em>
It should be noted that the number of neutrons of a chemical element can be calculated as the difference A-Z.
<u>The atomic and mass numbers of bismuth with 125 neutrons are</u>:
Z = 83
A = 83 + 125 = 208
Thus, the atomic symbol of the bismuth isotope with 125 neutrons is:
<em>(see second attached picture)</em>
Answer:
15.35 g of (NH₄)₃PO₄
Explanation:
First we need to look at the chemical reaction:
3 NH₃ + H₃PO₄ → (NH₄)₃PO₄
Now we calculate the number of moles of ammonia (NH₃):
number of moles = mass / molecular wight
number of moles = 5.24 / 17 = 0.308 moles of NH₃
Now from the chemical reaction we devise the following reasoning:
if 3 moles of NH₃ are produce 1 mole of (NH₄)₃PO₄
then 0.308 moles of NH₃ are produce X moles of (NH₄)₃PO₄
X = (0.308 × 1) / 3 = 0.103 moles of (NH₄)₃PO₄
mass = number of moles × molecular wight
mass = 0.103 × 149 = 15.35 g of (NH₄)₃PO₄