The question is incomplete, here is the complete question:
The rate of certain reaction is given by the following rate law:
![rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=rate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
At a certain concentration of ![H_2 and [tex]I_2, the initial rate of reaction is 0.120 M/s. What would the initial rate of the reaction be if the concentration of [tex]H_2 were halved.Answer : The initial rate of the reaction will be, 0.03 M/sExplanation :Rate law expression for the reaction:[tex]rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=H_2%20and%20%5Btex%5DI_2%2C%20the%20initial%20rate%20of%20reaction%20is%200.120%20M%2Fs.%20What%20would%20the%20initial%20rate%20of%20the%20reaction%20be%20if%20the%20concentration%20of%20%5Btex%5DH_2%20were%20halved.%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%20%3A%20The%20initial%20rate%20of%20the%20reaction%20will%20be%2C%200.03%20M%2Fs%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%20%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3ERate%20law%20expression%20for%20the%20reaction%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Drate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
As we are given that:
Initial rate = 0.120 M/s
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Dividing 2 by 1, we get:
![\frac{R}{0.120}=\frac{k(\frac{[H_2]}{2})^2[NH_3]}{k[H_2]^2[NH_3]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%7D%7B0.120%7D%3D%5Cfrac%7Bk%28%5Cfrac%7B%5BH_2%5D%7D%7B2%7D%29%5E2%5BNH_3%5D%7D%7Bk%5BH_2%5D%5E2%5BNH_3%5D%7D)


Therefore, the initial rate of the reaction will be, 0.03 M/s
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Makes zero sense. What’s the question?
a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :
