Answer:
b.only when the current in the first coil changes.
Explanation:
An induced current flow in the second coil only when there is a change in current in the first cool. A steady current will produce no change in flux (due to magnetic effect of a current) by the first coil, and according to Faraday, induced current is only produced when there is a change in flux linkage.
The Three fission reactions will produce nine neutrons
<h3>Meaning of Fission</h3>
Fission can be defined as a nuclear process that involves the breaking of a whole nuclear matter into smaller bits.
In a fission reaction, the matter is broken down into simpler bits.
In conclusion, The Three fission reactions will produce nine neutrons
Learn more about fission:brainly.com/question/3992688
#SPj1
Answer:
No
Explanation:
The rate at which solids expand when heated depends on the substance. Metals tend to have higher rates of expansion (per degree change in temperature) than non-metal solids, but there is variation even among metals. A table of expansion coefficients can be found here or here.
To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>
U = 0, initial upward speed
a = 29.4 m/s², acceleration up to 3.98 s
a = -9.8 m/s², acceleration after 3.98s
Let h₁ = the height at time t, for t ≤ 3.98 s
Let h₂ = the height at time t > 3.98 s
Motion for t ≤ 3.98 s:
h₁ = (1/2)*(29.4 m/s²)*(3.98 s)² = 232.854 m
Calculate the upward velocity at t = 3.98 s
v₁ = (29.4 m/s²)*(3.98 s) = 117.012 m/s
Motion for t > 3.98 s
At maximum height, the upward velocity is zero.
Calculate the extra distance traveled before the velocity is zero.
(117.012 m/s)² + 2*(-9.8 m/s²)*(h₂ m) = 0
h₂ = 698.562 m
The total height is
h₁ + h₂ = 232.854 + 698.562 = 931.416 m
Answer: 931.4 m (nearest tenth)