Answer:
earth
Explanation:
The formula for the orbital period of the moon is given by

As the time period is inversely proportional to the square root of the acceleration due to gravity of the planet.
As the value of acceleration due to gravity on Jupiter is more than the earth, so the period of moon around the earth is large as compared to the period of the moon around the Jupiter when the distance is same.
Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
I think the correct answer among the choices listed above is option B. The acceleration of gravity is a constant equal to 9.8 meters per second squared. You can see that all things fall at this rate if there is no air resistance in a system or when in a vacuum.
If it's not falling through air, water, smoke, or anything else,
and gravity is the only force on it, then its speed increases
at a constant rate ... 9.8 meters per second for every second
it falls. (That's the number on Earth. It's different in other places.)