Answer:
Intrusive and Extrusive igneous rocks.
Explanation:
Igneous rocks are defined as those rocks that are formed when magma undergoes the process of crystallization and solidification at or below the earth's surface. For example, Granite, Rhyolite, Gabbro and Diorite.
The igneous rocks are of two different types, namely-
- Intrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes below or within the earth's crust. For example, Granite.
- Extrusive igneous rocks- This type of igneous rocks are formed when the magma crystallizes and solidifies at the surface of the earth. For example, Basalt.
Answer:
131.5 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
First, we will calculate the standard enthalpy of the reaction (ΔH°).
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)
) - 1 mol × ΔH°f(CaCO₃(s)
)
ΔH° = 1 mol × (-634.9 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1207.6 kJ/mol)
ΔH° = 179.2 kJ
Then, we calculate the standard entropy of the reaction (ΔS°).
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)
) - 1 mol × S°(CaCO₃(s)
)
ΔS° = 1 mol × (38.1 J/mol.K) + 1 mol × (213.8 J/mol.K) - 1 mol × (91.7 J/mol.K)
ΔS° = 160.2 J/K = 0.1602 kJ/K
Finally, we calculate the standard Gibbs free energy of the reaction at T = 25°C = 298 K.
ΔG° = ΔH° - T × ΔS°
ΔG° = 179.2 kJ - 298 K × 0.1602 kJ/K
ΔG° = 131.5 kJ
When they ask you for the solution they are usually asking for x. So solve for X.
X=-12 so you only have one solution. so the answer is B
Answer:
The concentration of protons affects an enzyme's folded structure and reactivity.
Explanation:
Enzymes act within narrow pH limits (optimal reaction pH). Since most enzymes have a protein structure, the variation in pH or temperature affects their enzymatic activity.
To catalyze a reaction, an enzyme binds to one or more reagent molecules. These molecules are the substrates of the enzyme.
In some reactions, a substrate breaks into several products. In others, two substrates join together to create a larger molecule or to exchange parts. In fact, for any biological reaction that can occur to you, there is probably an enzyme to accelerate it.
The part of the enzyme where the substrate binds is called the active site.
The amino acid residues of the active site often have acidic or basic properties that are important for catalysis. Changes in pH can affect these residues and make binding with the substrate difficult.