Answer: b
Explanation: I just feel like it’s the best answer choice
Answer:
- Protozoans → would not have survived because they have no way to produce their own food → Heterotrophs
- Algae → would have survived without this food source → Heterotrophs
Explanation:
The protist kingdom is composed of two main groups. The principal difference between them is that algae can produce their own food, while protozoans need to ingest other organisms or organic molecules to survive.
- Algaes are autotroph
- Protozoans are heterotroph
<u>Protozoans</u>:
Microscopic unicellular organisms, eukaryotic and heterotrophs -predators or detritivores-. Most of them are aquatic free-living organisms, but some species are parasites. They feed on<u> bacteria</u>, other organic wastes, and other microscopic organisms. The phagocytosis process is normally used to ingest the food, invaginating their cell membrane.
<u>Algae</u>:
Eukaryotic micro- or macroscopic organisms. Autotroph and photosynthetic. They might be either unicellular or pluricellular. They use sunlight to synthesize organic matter from water, CO₂, and mineral salts. Unicellular ones can be free-living or associate with others to form colonies. They are part of the phytoplankton and are ingested by heterotrophic organisms. Pluricellular algae do not create real tissues but they compose a tale. The depth at which they inhabit depends on the pigments they produce. All of them inhabit fresh or sea waters.
Answer:
Hepato- and nephrotoxicity of fluoride have been demonstrated in animals, but few studies have examined potential effects in humans. This population-based study examines the relationship between chronic low-level fluoride exposure and kidney and liver function among United States (U.S.) adolescents. This study aimed to evaluate whether greater fluoride exposure is associated with altered kidney and liver parameters among U.S. youth.
This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (2013–2016). We analyzed data from 1983 and 1742 adolescents who had plasma and water fluoride measures respectively and did not have kidney disease. Fluoride was measured in plasma and household tap water. Kidney parameters included estimated glomerular filtration rate (calculated by the original Schwartz formula), serum uric acid, and the urinary albumin to creatinine ratio. Liver parameters were assessed in serum and included alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, blood urea nitrogen, gamma-glutamyl transferase, and albumin. Survey-weighted linear regression examined relationships between fluoride exposure and kidney and liver parameters after covariate adjustment. A Holm-Bonferroni correction accounted for multiple comparisons.
The average age of adolescents was 15.4 years. Median water and plasma fluoride concentrations were 0.48 mg/L and 0.33 μmol/L respectively. A 1 μmol/L increase in plasma fluoride was associated with a 10.36 mL/min/1.73 m2 lower estimated glomerular filtration rate (95% CI: −17.50, −3.22; p = 0.05), a 0.29 mg/dL higher serum uric acid concentration (95% CI: 0.09, 0.50; p = 0.05), and a 1.29 mg/dL lower blood urea nitrogen concentration (95%CI: −1.87, −0.70; p < 0.001). A 1 mg/L increase in water fluoride was associated with a 0.93 mg/dL lower blood urea nitrogen concentration (95% CI: −1.44, −0.42; p = 0.007).
Fluoride exposure may contribute to complex changes in kidney and liver related parameters among U.S. adolescents. As the study is cross-sectional, reverse causality cannot be ruled out; therefore, altered kidney and/or liver function may impact bodily fluoride absorption and metabolic processes.
hope this helps
rate brainiest
Neurotransmitters is the word you're looking for.
Proteins are polymers, relatively large molecules made form many smaller molecules. Each protein molecules is built up from amino acids, smaller monomer molecules that join end to end to make the protein polymers molecule. <span />