<h3>
Answer:</h3>
Vacuum
<h3>
Explanation:</h3>
Concept being tested: Waves and types of waves
To answer the question we need to define both electromagnetic waves and mechanical waves.
- Waves can be classified as either electromagnetic waves and mechanical waves based on whether they require a material medium for transmission or not.
- Electromagnetic waves do not require a material medium for transmission and can travel through a vacuum.
- Mechanical waves, on the other hand, are waves that require a material medium for transmission.
What are examples of electromagnetic waves and mechanical waves?
- Examples of electromagnetic waves include gamma rays, radio waves, visible light, etc.
- Examples of mechanical waves include sound waves and water waves.
Therefore, the answer to our question is;
- Electromagnetic waves are not mechanical waves, which means they can travel in a vacuum.
Newton’s second law is that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Answer:
a. a = 
b. T = -0.81 N
Explanation:
Given,
- weight of the lighter block =

- weight of the heavier block =

- inclination angle =

- coefficient of kinetic friction between the lighter block and the surface =

- coefficient of kinetic friction between the heavier block and the surface =

- friction force on the lighter block =

- friction force on the heavier block =

Let 'a' be the acceleration of the blocks and 'T' be the tension in the string.
From the f.b.d. of the lighter block,

From the f.b.d. of the heavier block,

From eqn (1) and (2), we get,

![\Rightarrow a\ =\ \dfrac{g(w_1sin\theta\ -\ \mu_1w_1cos\theta\ +\ w_2sin\theta\ +\ \mu_2w_2cos\theta)}{w_1\ +\ w_2}\\\Rightarrow a\ =\ \dfrac{g[sin\theta(w_1\ +\ w_2)\ +\ cos\theta(\mu_2w_2\ -\ \mu_1w_1)]}{w_1\ +\ w_2}\\](https://tex.z-dn.net/?f=%5CRightarrow%20a%5C%20%3D%5C%20%5Cdfrac%7Bg%28w_1sin%5Ctheta%5C%20-%5C%20%5Cmu_1w_1cos%5Ctheta%5C%20%2B%5C%20w_2sin%5Ctheta%5C%20%2B%5C%20%5Cmu_2w_2cos%5Ctheta%29%7D%7Bw_1%5C%20%2B%5C%20w_2%7D%5C%5C%5CRightarrow%20a%5C%20%3D%5C%20%5Cdfrac%7Bg%5Bsin%5Ctheta%28w_1%5C%20%2B%5C%20w_2%29%5C%20%2B%5C%20cos%5Ctheta%28%5Cmu_2w_2%5C%20-%5C%20%5Cmu_1w_1%29%5D%7D%7Bw_1%5C%20%2B%5C%20w_2%7D%5C%5C)
![\Rightarrow a\ =\ \dfrac{9.81\times [sin30^o\times (3.0\ +\ 7.0)\ +\ cos30^o\times (0.31\times 7.0\ -\ 0.13\times 3.0)]}{3.0\ +\ 7.0}\\\Rightarrow a\ =\ 6.4\ m/s.](https://tex.z-dn.net/?f=%5CRightarrow%20a%5C%20%3D%5C%20%5Cdfrac%7B9.81%5Ctimes%20%5Bsin30%5Eo%5Ctimes%20%283.0%5C%20%2B%5C%207.0%29%5C%20%2B%5C%20cos30%5Eo%5Ctimes%20%280.31%5Ctimes%207.0%5C%20-%5C%200.13%5Ctimes%203.0%29%5D%7D%7B3.0%5C%20%2B%5C%207.0%7D%5C%5C%5CRightarrow%20a%5C%20%3D%5C%206.4%5C%20m%2Fs.)
part (b)
From the eqn (2), we get,
Answer:She would need to first know the weight of the sculpture and what she is going to move it with then she will need to use newton's second law to calculate the amount of force needed to move it
Explanation: I just did the assignment on edgunity