Answer:
- A book lying on a table - Balanced force
- An airplane cruising in level flight - Balanced
- A rock falling from a cliff - Unbalanced force
- A bridge collapsing in an earthquake - Unbalanced force
- A man sitting on a park bench - Balanced force
- A space shuttle taking off - Unbalanced force
- A car maintaining a constant speed on a straight road - Balanced force
- An airplane landing - Unbalanced force
Explanation:
Usually, one or more forces act on a body at an instant of time. When these forces acting on a body and bring the body in the equilibrium position, the force is said to be balanced. The unbalanced force changes the equilibrium state of the body.
As in the case of an airplane cruising in a level flight, the weight of the plane will be equal to the lift force and the thrust is equal to the drag. So the plane is experiencing a balanced force.
Given Information:
Current = I = 28 A
distance between wires = r = 2.0 m
Required Information:
Magnetic field = B = ?
Answer:
B = 12x10⁻⁶ T
Step-by-step explanation:
Biot-Savart Law is given by
B = μ₀I/2πr
Where μ₀ is the permeability of free space, I is the current flowing through the wire and B is the magnitude of the magnetic field produced.
We are asked to find the magnetic field midway between the wires so r/2 = 1
B = 4πx10⁻⁷*28/2π*1
B = 6x10⁻⁶ T
since the same amount of current flows in both wires therefore, equal amount of magnetic field will be produced in both wires
B = 2*6x10⁻⁶ T
B = 12x10⁻⁶ T
Therefore, the net magnetic field midway between the two wires is 12x10⁻⁶ T.
Answer:
a) 1.67 m/s
b) 23kJ
Explanation:
We need to apply the linear momentum conservation formula, that states:

in this case:

the initital kinetic energy is:

and the final:

The energy lost is given by:

They differ because they are transverse wave. That is their direction of travel is perpendicular to its vibrations.
The answer is A. Energy from <span>various energy sources, such as wind or from burning fossil fuels, is used to spin the blades of the turbine. The turbine then powers a generator, which produces electricity.
Works on simple principle of the turbine blades translation of energy sources causing the mechanical spin of the blades which is connected to a rotor which spins the main shaft of generator thus producing electricity.</span>