Answer:
147.456077993 Hz
Explanation:
= Frequency of the sonar = 22 kHz
= Velocity of the whale = 4.95 m/s
v = Speed of sound in water = 1482 m/s
The difference in frequency is given by

The difference in frequency is 147.456077993 Hz
I have a formula here that might just help you solve the problem on your own:
The number of images depends on the angle between the two mirrors. The number of images formed in two plane mirrors inclined at an angle A to each other is given by the formula:
Number of images = 360<span>/A - 1.
</span>
I hope my guide has come to your help. God bless and have a nice day ahead!
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
First of all, you didn't tell us WHO measured the "10 years".
If it was the people on Earth, then 10 years passed according to them.
If it was 10 years on the space traveler's clock, then the clock in the
OTHER place, like on Earth, is subject to the relativistic 'time dilation'.
If the clocks are moving relative to each other, then the time interval measured
on either clock is equal to the interval measured on the other clock, divided by
√(1 - v²/c²) .
You said that v/c = 0.85 .
v²/c² = (0.85)² = 0.7225
1 - v²/c² = 1 - 0.7225 = 0.2775
√(1 - v²/c²) = √0.2775 = 0.5268
If one clock counts up 10 years, then the other one counts up
(10years) / 0.5268 = <em>18.983 years </em>
I believe that's the way to do this, and I'll gladly take your points,
but let me recommend that you get a second opinion before you
actually take off on your 10-year interstellar mission.
A piece of purple plastic is charged with 3. 13×106 extra electrons compared to its neutral state, then the net electric charge in coulomb would be - 5.008×10⁻¹³ coulombs.
<h3>What is an electric charge?</h3>
Charged material experiences a force when it is exposed to an electromagnetic field due to the physical property of electric charge. You can have a positive or negative electric charge (commonly carried by protons and electrons respectively). Unlike charges attract one another while like charges repel one another. We refer to an object as neutral if it has no net charge.
The charge on one electron is -1.6 ×10⁻¹⁹ coulomb.
Then the charge on the 3.13×10⁶ extra electrons compared to its neutral state
=-1.6×10⁻¹⁹ ×(3.13×10⁶)
As given in the problem A piece of purple plastic is charged with 3.13×10⁶ extra electrons compared to its neutral state then the net electric charge in coulombs would be - 5.008×10⁻¹³ coulombs.
Learn more about an electric charge from here
brainly.com/question/8163163
#SPJ4