Answer:
The time it takes the ball to fall 3.8 meters to friend below is approximately 0.88 seconds
Explanation:
The height from which the student tosses the ball to a friend, h = 3.8 meters above the friend
The direction in which the student tosses the ball = The horizontal direction
Given that the ball is tossed in the horizontal direction, and not the vertical direction, the initial vertical component of the velocity of the ball = 0
The equation of the vertical motion of the ball can therefore, be represented by the free fall equation as follows;
h = 1/2 × g × t²
Where;
g = The acceleration due gravity of the ball = 9.81 m/s²
t = The time of motion to cover height, h
Then height is already given as h = 3.8 m
Substituting gives;
3.8 = 1/2 × 9.81 × t²
t² = 3.8/(1/2 × 9.81) ≈ 0.775 s²
∴ t = √0.775 ≈ 0.88 seconds
The time it takes the ball to fall 3.8 meters to friend below is t ≈ 0.88 seconds.
Answer:
d = 4 d₀o
Explanation:
We can solve this exercise using the relationship between work and the variation of kinetic energy
W = ΔK
In that case as the car stops v_f = 0
the work is
W = -fr d
we substitute
- fr d₀ = 0 - ½ m v₀²
d₀ = ½ m v₀² / fr
now they indicate that the vehicle is coming at twice the speed
v = 2 v₀
using the same expressions we find
d = ½ m (2v₀)² / fr
d = 4 (½ m v₀² / fr)
d = 4 d₀o
Answer: it becomes a positive ion
Explanation:
So, when an atom loses 2 electrons there will be no change in the number of neutrons. Therefore, an isotope will not form. Thus, it is concluded that when an atom with no charge loses two electrons, it becomes a positive ion.
The universal law of gravitation states that:
Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of distance between them.
It means that if the gravitational force is F, then if the distance is decreased by 5 times, then the new gravitation force is:
F/5² = F/25
Answer:
15 meters
Explanation:
The inicial energy of the ball is just potencial energy, and its value is:
E = m * g * h = m * g * 20,
where m is the ball mass, and g is the value of gravity.
In the moment that the ball strickes the ground, all potencial energy transformed into kinetic energy, and 25% of this energy is lost, so the total energy at this moment will be:
E' = 0.75 * E = 0.75 * m * g * 20 = 15*m*g
This kinetic energy will make the ball goes up again, and at the maximum height, all kinetic energy is transformed back into potencial energy.
So, as the mass and the gravity are constants, we can calculate the height the ball will reach:
E' = m*g*h = 15*m*g -> h = 15 meters