-- Before Adrian left the airplane, his gravitational potential energy was
(mass) x (gravity) x (height) = (80kg) x (9.81m/s²) x (1,000m) = 784,800 joules
-- When he reached the ground, his kinetic energy was
(1/2) x (mass) x (speed)² = (40kg) x (5m/s)² = 1,000 joules
-- Between the airplane and the ground, the Adrian lost
(784,800 joules) - (1,000 joules) = 783,800 joules
Where did all that energy go ?
Energy never just disappears. If it's missing, it had to go somewhere.
The Adrian used 783,800 joules of energy to push air our of his way
so that he could continue his parachute jump, and reach the ground
in time to be home for dinner.
I think 4.69 x 108 charges have been removed
The half-meter rule (easy math) is 0.5 meters or 50 centimeters since a meter is 1 meters long, which is equivalent to 100 centimeters. Therefore, we shall apply the 50 cm rule.
A 50 cm rule's center of mass is now 25 cm away.
Additionally, according to the data, the object is pivoted at 15 cm, while the 40 g object is hung at 2 cm from the rule's beginning. Using a straightforward formula, we can compare the two situations: the distance from the pivot to the center of the mass times the mass of the 40 g object divided by 2 cm must equal the distance from the pivot to the center of the mass times mass of the 10 x g object
The result of the straightforward computation must be 52g.
Most simplified version:
the center of mass of the rule is at the 25 cm mark
⇒ 
⇒ 
#SPJ2
Answer:
The water level will drop by about 1.24 cm in 1 day.
Explanation:
Here Mass flux of water vapour is given as

where
is the mass flux of the water which is to be calculated.
- D is diffusion coefficient which is given as

- l is the thickness of the film which is 0.15 cm thick.
is given as

In this
is the saturated water pressure, which is look up from the saturated water property at 20°C and 0.5 saturation given as 2.34 Pa
is the air pressure which is given as 0.5 times of 
- R is the universal gas constant as

- T is the temperature in Kelvin scale which is

By substituting values in the equation

Converting
into 
As 1 mole of water 18
so

Putting this in the equation of mass flux equation gives

For calculation of water level drop in a day, converting mass flux as

So the water level will drop by about 1.24 cm in 1 day.
Oh yeah I just got cheated lol lol lol lol