Answer:
See explanation
Explanation:
We have to convert to angular velocity in rads-1 as follows;
Angular velocity in rad/s = 2π/60 × 1900 rpm = 199 rad/s
Given that
angular velocity =angle turned /time taken
Time taken = angle turned/angular velocity
Converting 35° to radians we have;
35 × π/180 = 0.61 radians
Time taken = 0.61 radians/199 rad/s
Time taken = 0.0031 seconds
The question is asking to calculate the tension that the string has to adjust the string so that when vibrating in its second overtone, it produces sound of wavelength of 0.761m, base on my calculation, the calculation must be done by the formula of <span>v=λf</span><span>., I hope this would help </span>
Answer:
17.7 m/s
Explanation:
Given:
y₀ = 0 m
y = 16 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: v
v² = v₀² + 2a (y − y₀)
v² = (0 m/s)² + 2 (9.8 m/s²) (16 m − 0 m)
v = 17.7 m/s
The ball is moving at a speed of 17.7 m/s when it hits the ground.