First, we will get the resultant force:
The direction of the force due to the person's weight is vertically down.
weight of person = 700 newton
Assume that the force exerted by the arms has a vertically upwards direction.
Force exerted by arms = 2*355 = 710 newtons
Therefore, the resultant force = 710 - 700 = 10 newtons (in the vertically upwards direction)
Now, we will get the mass of the person.
weight = 700 newtons
weight = mass * acceleration due to gravity
700 = 9.8*mass
mass = 71.428 kg
Then we will calculate the acceleration of the resultant force:
Force = mass*acceleration
10 = 71.428*acceleration
acceleration = 0.14 m/sec^2
Finally, we will use the equation of motion to get the final speed of the person.
V^2 = U^2 + 2aS where:
V is the final velocity that we need to calculate
U is the initial velocity = 0 m/sec (person starts at rest)
a is the person's acceleration = 0.14 m/sec^2
S is the distance covered = 25 cm = 0.25 meters
Substitute with the givens in the above equation to get the final speed as follows:
V^2 = U^2 + 2aS
V^2 = (0)^2 + 2(0.14)(0.25)
V^2 = 0.07
V = 0.2645 m/sec
Based on the above calculations:
The person's speed at the given point is 0.2645 m/sec
A battery-operated car moves forward as a result of which device?
A) Electromagnet
B) Generator
<u>C) Motor </u>
D) Transformer
<span> answer>>>>electric force <<<<by the way i don't like physics but i answer this for you ^-^</span>
<span>This is because centripetal force is just the net force of a circular motion. There are no attractive or repulsive forces here. This is not the case here. </span>
<span>The gravitational force is a force reliant on mass and attraction of the masses. There are attractive forces here, but not really repulsive forces. </span>
<span>The electric force is the only one that would make sense because it has to do with a relationship between charges and includes both repulsive and attractive forces.</span>
Answer:
D. two positively charged objects
The acceleration of the object is 
Explanation:
We can solve the problem by using Newton's second law, which states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass of the object
a is its acceleration
For the object in this problem,
F = 500 N is the applied force
m = 75 kg is the force
Solving the equation for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly