Answer:
The distance from the top of the stick would be 2l/3
Explanation:
Let the impulse 'FΔt' acts as a distance 'x' from the hinge 'H'. Assume no impulsive reaction is generated at 'H'. Let the angular velocity of the rod about 'H' just after the applied impulse be 'W'. Also consider that the center of percussion is the point on a bean attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot.
Applying impulse momentum theorem for linear momentum.
FΔt = m(Wl/2), since velocity of center of mass of rod = Wl/2
Similarly applying impulse momentum theorem per angular momentum about H
FΔt * x = I * W
Where FΔt * x represents the impulsive torque and I is the moment of inertia
F Δt.x = (ml² . W)/3
Substituting FΔt
M(Wl/2) * x = (ml². W)/3
1/x = 3/2l
x = 2l/3
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S
Answer:
1, their atoms have the same number of valence electron. because valence electron determine the group of elements.