1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
3 years ago
13

magine two carts, one with twice the mass of the other, that are going to have a head-on collision. In order for the two carts t

o be at rest after the collision, how fast must the less massive cart move compared to the more massive cart
Physics
1 answer:
scoray [572]3 years ago
8 0

Answer:

Twice as fast

Explanation:

Solution:-

- The mass of less massive cart = m

- The mass of Massive cart = 2m

- The velocity of less massive cart = u

- The velocity of massive cart = v

- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.

- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.

- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

                             P_i = P_f

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

                             P_i = P_f = 0

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:

                             m*u - 2*m*v = 0

Where,

                 ( u ) and ( v ) are opposing velocity vectors in 1-dimension.

- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:

                          m*u = 2*m*v

                              u = 2*v

Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).

You might be interested in
"My distance to the center of the earth is about 4000 miles when I am on the surface. If I go to a height of 8000 miles above th
lord [1]

Given,

Distance from the surface to the center of the earth, d=4000 miles

Distance from the center to you at a height of 8000 miles, a= 8000+4000=12000 miles

The gravitational force acting on a person at the surface is equal to his weight.

From Newton's Universal Law of Gravitation, the gravitational force is

F=\frac{G\times M\times m}{r^2}

Where G is the gravitational constant, M is the mass of the earth, m is the mass of the object/person, r is the distance between the center of the earth and the object/person

At the surface, this force is equal to the weight of the person, W=mg

i.e.

F_s=\frac{G\times M\times m}{d^2}=W

On substituting the of d,

W=\frac{\text{GMm}}{4000^2}

At a height of 8000 miles from the surface, the gravitational force is equal to,

F_a=\frac{GMm}{12000^2}

On dividing the above two equations,

\frac{F_a}{W}=\frac{4000^2^{}}{12000^2}=\frac{1}{9}

Therefore,

F_a=\frac{1}{9}W

Therefore at a height of 8000 miles above the surface of the earth, the force of gravity becomes 1/9 time your weight.

5 0
11 months ago
Which of the following are found within the electromagnetic spectrum? Check all that apply. sound waves visible light X rays ult
sattari [20]

Answer:

Visible light

X rays

ultraviolet radiation

gamma rays

microwave radiation

Explanation:

Electromagnetic waves consist of oscillating electric and magnetic fields which vibrate in a direction perpendicular to the direction of motion of the wave (transverse wave). Electromagnetic waves have all same speed in a vacuum (c=3.0\cdot 10^8 m/s, known as speed of light) and are classified into 7 different types according to their frequency and wavelength. This classification is called electromagnetic spectrum.

From lowest to highest wavelength, the 7 types are:

Gamma rays

X-rays

Ultraviolet radiation

Visible light

Infrared radiation

Microwaves

Radio waves

Sound waves, on the contrary, do not belong to the electromagnetic spectrum, since they are another type of wave called mechanical waves (which consist of vibrations of the particles in a medium).

8 0
3 years ago
A 7.7 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest. The composite system moves with a
klemol [59]

Answer:

15.4 kg.

Explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u' = V(m+m').................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.

Given: m = 7.7 kg, u' = 0 m/s (at rest)

Let: u = x m/s, and V = 1/3x m/s

Substitute into equation 1

7.7(x)+m'(0) = 1/3x(7.7+m')

7.7x = 1/3x(7.7+m')

7.7 = 1/3(7.7+m')

23.1 = 7.7+m'

m' = 23.1-7.7

m' = 15.4 kg.

Hence the mass of the second sphere = 15.4 kg

7 0
3 years ago
Read 2 more answers
A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound
NemiM [27]

Answer:

f3 = 102 Hz

Explanation:

To find the frequency of the sound produced by the pipe you use the following formula:

f_n=\frac{nv_s}{4L}

n: number of the harmonic = 3

vs: speed of sound = 340 m/s

L: length of the pipe = 2.5 m

You replace the values of n, L and vs in order to calculate the frequency:

f_{3}=\frac{(3)(340m/s)}{4(2.5m)}=102\ Hz

hence, the frequency of the third overtone is 102 Hz

8 0
3 years ago
Calculate the pressure exerted on the ground by a boy of a mass 60 kg if he stands on one foot.the area of the sole of his shoe
ddd [48]

Answer:

40 Kpa

Explanation:

150 cm2 = 0.015 m2

p \:  =  \frac{mg}{ a}  = 40000

8 0
2 years ago
Other questions:
  • When the Net Force quadrupled from 50N to 200N, how many times bigger was the acceleration?
    13·1 answer
  • How can magnet be used to produce an electric current
    11·1 answer
  • A car speeds up from rest to +16 m/ s in 4s. calculate the acceleration
    15·2 answers
  • If vector C is added to vector D, the result is a third vector that is perpendicular to D and has a magnitude equal to 3D. What
    14·1 answer
  • Ask Your Teacher In a choir practice room, two parallel walls are 4.00 m apart. The singers stand against the north wall. The or
    8·1 answer
  • Two charges q1 and q2, that are distance d apart , repel each other with a force of 6.40 N. what would be the force between two
    8·1 answer
  • What is sir Richard Branson's personal dilemma ?<br>​
    5·1 answer
  • Alex goes cruising on his dirt bike. He rides 700m north, 300m east, 400m north, 600m west, 1200m south, 300m east and finally 1
    13·1 answer
  • Provide support to the argument that Cornell university did violate ethical requirements for research
    5·1 answer
  • How are reflectivity and solubility related?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!