Answer:
<h2>Potential difference across capacitors in parallel
</h2>
Two or more capacitors are said to be connected in parallel if each one of them is connected across the same two points. In a parallel combination of capacitors potential difference across each capacitor is same but each capacitor will store different charge.
Astronomers can measure a star's<span> position once, and then again 6 months later and </span>calculate<span> the apparent change in position. The </span>star's<span> apparent motion is called stellar </span>parallax<span>. The </span>distance<span> d is measured in parsecs and the </span>parallax<span> angle p is measured in arc seconds.</span>
Answer:
0.21%
Explanation:
We are given;
Mass; m = 100 kg
Diameter; d = 2.2 mm = 2.2 × 10^(-3) m
Young's modulus; E = 12.5 x 10^(10) N/m².
Formula for area is;
A = πd²/4
A = (π/4) x (2.2 x 10^(-3))²
A = 3.8 x 10^(-6) m²
Force; F = mg
g is acceleration due to gravity and has a constant value of 9.8 m/s²
F = 100 × 9.8
F = 980 N
Formula for young's modulus is;
E = Stress/strain
Formula for stress = F/A
Formula for strain = ΔL/L
Thus;
E = (F/A)/(ΔL/L)
Making ΔL/L the subject, we have;
ΔL/L = (F/A)/E
Plugging in the relevant values;
ΔL/L = 980/(3.8 x 10^(-6) × 12.5 × 10^(10))
ΔL/L = 0.0021
Then percentage increase in length of a wire = 0.0021 × 100% = 0.21%