Compression and rarefaction are two phenomenon occurs in longitudunal wave!
when there is denser particle gathering in that wave , there we called it compression and the rarer part of particles is rarefaction !
Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N
Answer:
v = 23.66 m/s
Explanation:
recall that one of the equations of motion may be expressed:
v² = u² + 2as,
Where
v = final velocity (we are asked to find this)
u = initial velocity = 0 m/s since we are told that it starts from rest
a = acceleration = 0.56m/s²
s = distance traveled = given as 500m
Simply substitute the known values into the equation:
v² = u² + 2as
v² = 0 + 2(0.56)(500)
v² = 560
v = √560
v = 23.66 m/s
Answer:
x component 60.85 m
y component 101.031 m
Explanation:
We have given distance r = 118 km
Angle which makes from ground = 58.9°
(a) X component of distance is given by 
(b) Y component of distance is given by 
These are the x and y component of position vector
Explanation:
Charges,

The distance between charges, r = 10 cm = 0.1 m
We need to find the magnitude and direction of the electric force. It is given by :

So, the required force between charges is 36 N and it is towards positive charge i.e. +8 μC.