22.4L
of any gas contains 1 mol of that gas.
50.75g/10L*22.4L/1 mol= 113.68g/mol- this is the mole weight of your gas
1 mol/113.68g*129.3g=1.137403 mol
Set up a ratio
1.137403mol/x L=1 mol/22.4 L
X=25.477827L, or with sig figs, x=25.5L
We should use renewable resources wisely because <u>if we over use them the resources we already have will decline.</u>
Answer:
+125.4 KJmol-1
Explanation:
∆H C4H10(g) = -2877.6kJ/mol
∆H C(s)=-393.5kJ/mol
∆H H2(g) = -285.8
∆H reaction= ∆Hproducts - ∆H reactants
∆H reaction= (-2877.6kJ/mol) - [4(-393.5kJ/mol) +5(-285.8)]
∆H reaction= +125.4 KJmol-1
Answer:
4 × 10 g
Explanation:
Step 1: Write the balanced equation
2 H₂(g) + O₂(g) ⇒ 2 H₂O(I)
Step 2: Calculate the moles corresponding to 4 g of H₂
The molar mass of H₂ is 2.02 g/mol.
4 g × 1 mol/2.02 g = 2 mol
Step 3: Calculate the moles of H₂O produced from 2 moles of H₂
The molar ratio of H₂ to H₂O is 2:2. The moles of H₂O produced are 2/2 × 2 mol = 2 mol.
Step 4: Calculate the mass corresponding to 2 moles of H₂O
The molar mass of H₂O is 18.02 g/mol.
2 mol × 18.02 g/mol = 4 × 10 g
Answer:
To gain stability
Explanation:
If the outermost shell is not completely filled with electrons, the element has one of the three options: gaining electrons, losing electrons or sharing electrons. By gaining or losing electrons, ionic compounds are produced. Sharing of electrons results in the formation of covalent compounds.