1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
daser333 [38]
3 years ago
10

A gumdrop is released from rest at the top of the empire state building, which is 381 m tall. disregarding air resistance, calcu

late the displacement and velocity of the gumdrop after 1.00, 2.00, and 3.00 s.
Physics
1 answer:
Anika [276]3 years ago
3 0

<u>Answer:</u>

 Displacement after 1 second = 4.9 m

 Displacement after 2 seconds = 19.6 m

 Displacement after 3 seconds = 44.1 m

 Velocity after 1 second = 9.8 m/s

  Velocity after 2 seconds = 19.6 m/s

  Velocity after 3 seconds = 29.4 m/s

<u>Explanation:</u>

We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

 Height of building, displacement = 381 meter

 Initial velocity = 0 m/s

 Acceleration = Acceleration due to gravity = 9.8 m/s^2

 Displacement after 1 second = 0*1+\frac{1}{2}*9.8*1^2=4.9m

 Displacement after 2 seconds = 0*2+\frac{1}{2}*9.8*2^2=19.6m

 Displacement after 3 seconds = 0*3+\frac{1}{2}*9.8*3^2=44.1m

We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

  Velocity after 1 second = 0 + 9.8 * 1 = 9.8 m/s

  Velocity after 2 seconds = 0 + 9.8 * 2 = 19.6 m/s

  Velocity after 3 seconds = 0 + 9.8 * 3 = 29.4 m/s

You might be interested in
A sailboat is moving across the water at 3.0 m/s. A gust of wind fills its sails and it accelerates at a constant 2.0 m/s2. At t
Flauer [41]

Answer:

v = 9 m/s

Explanation:

It is given that,

Initial speed of the sailboat, u = 3 m/s

Acceleration of the sailboat, a=2\ m/s^2

Initial speed of the motorboat, u = 0

Acceleration of the motorboat, a=4\ m/s^2

Time elapsed, t = 3 s

To find,

The velocity of the sailboat

Solve,

Let v is the velocity of the sailboat after 3 seconds. By using the equation of kinematics, it can be calculated.

v=u+at

v=3\ m/s+2\ m/s^2\times 3\ s

v = 9 m/s

Therefore, the velocity of the sailboat is 9 m/s.

5 0
3 years ago
Please help me with both of them
8_murik_8 [283]

Answer:

101011010101010100101000101010100010011010100010100000101041204105210241012021012021021012022221222122122345788981633333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333311111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111114565656565+4+652147

21212121512

546213171549895465621324547998995656565656565656565722426579898541321447985331321

Explanation:

4 0
4 years ago
How many additional valence electrons does fluorine need to have a full
KatRina [158]

Answer:

D= Seven

Explanation:

7 0
3 years ago
A bowling ball is launched from the top of a building at an angle of 35° above the horizontal with an initial speed of 15 m/s. T
Mamont248 [21]

Let y_0 be the height of the building and thus the initial height of the ball. The ball's altitude at time t is given by

y=y_0+\left(15\dfrac{\rm m}{\rm s}\right)\sin35^\circ\,t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity.

The ball reaches the ground when y=0 after t=2.9\,\mathrm s. Solve for y_0:

0=y_0+\left(15\dfrac{\rm m}{\rm s}\right)\sin35^\circ(2.9\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(2.9\,\mathrm s)^2

\implies y_0\approx16.258\,\mathrm m

so the building is about 16 m tall (keeping track of significant digits).

3 0
3 years ago
A long, East-West-oriented power cable carrying an
Alla [95]

Answer:

200A

Explanation:

Given that

the distance between earth surface and power cable d = 8m

when the current is flowing through cable , the magnitude flux density at the surface is 15μT

when the current flow throught is zero the magnitude flux density at the surface is 20μT

The change in flux density due to the current flowing in the power cable is

B = 20μT - 15μT

B =5μT -----(1)

The expression of magnitude flux density produced by the current carrying cable is

B=\frac{\mu_0I}{2\pi d}-----(2)

Substitute the value of flux density

B from eqn 1 and eqn 2

\frac{\mu_0I}{2\pi d}=5\times 10^-^6\\\\\frac{(4\pi \times 10^-^7)I}{2 \pi (8)} =5\times 10^-^6\\\\I=200A

Therefore, the magnitude of current I is 200A

8 0
3 years ago
Other questions:
  • Can someone help me with this whole page? i can't seem to figure it out. Is physics homework
    6·1 answer
  • a student pushes a 40 in Block across the floor for a distance of 10 meters how much work was done to move the block A) 4j. B) 4
    5·1 answer
  • A ball attached to a string is whirled around in a horizontal circle having a radius r. If the radius of the circle is changed t
    12·1 answer
  • Juan is standing on the street. An ambulance moves toward him and then passes by. What best describes the pitch that Juan heats?
    8·1 answer
  • What are the dangers of microwaves in the Em spectrum?
    8·2 answers
  • A cannonball is fired across a flat field at an angle of 43 degrees with an initial speed 32 m/s and height of 12 m.
    6·1 answer
  • Why is physics important for high school students to learn?
    10·1 answer
  • Which electric component provides energy to the circuit of a flashlight?
    8·2 answers
  • Use this free body diagram to help you find the magnitude of the force needed to keep this block in static equilibrium.
    5·1 answer
  • S Four identical particles, each having charge q and mass m, are released from rest at the vertices of a square of side L. How f
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!