1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
12

How fast is the sixth cosmic velocity?

Physics
1 answer:
denpristay [2]3 years ago
3 0
<span>25,000 miles per hour

hope that this helps</span>
You might be interested in
What type of convergent boundary is the himalayan mountains formed by
Diano4ka-milaya [45]

The Himalayan Mountains formed at a convergence plate boundary between the Eurasian plate and the Indian plate.

8 0
3 years ago
An airplane flies at 150 km/hr. (a) The airplane is towing a banner that is b = 0.8 m tall and l = 25 m long. If the drag coef-
maw [93]

Answer:

  1. Power requirement <u>P</u> for the banner is found to be  30.62 W
  2. Power requirement <u>P</u> for the solid flat plate is found to be 653.225 W
  3. Answer for part(c) is explained below in the explanation section and can be summarized as: The main difference between the drags and power requirements of the two objects of same size was due to their significantly different drag-coefficients. The <em>Cd </em>for banner was given, whereas the <em>Cd </em>for a flat plate is generally found to be around <em><u>1.28</u></em><em> </em>which is the value we used in our calculations that resulted in a huge increase of power to tow the flat plate
  4. Power requirement <u>P</u> for the smooth spherical balloon was found to be 40.08 W

Explanation:

First of all we will establish variables and equations known that are known to us to solve this question. Since we are given the velocity of the airplane:

  1. v = velocity of airplane i.e. 150 km/hr. To convert it into m/s we will divide it by 3.6 which gives us 41.66 m/s
  2. The density of air at s.t.p (standard temperature pressure) is given as d = 1.225 kg / m^3
  3. The power can be determined this equation: P = F . v, where F represents <em>the drag-force</em> that we will need to determine and v represents the<em> velocity of the airplane</em>
  4. The equation to determine drag-force is: F = 1/2 * d *  C_d * A

In the drag-force equation Cd represents the c<em>o-efficient of drag</em> and A represents the <em>frontal area of the banner/plate/balloon (the object being towed)</em>

Frontal area A of the banner is : 25 x 0.8 = 20 m^2

<u>Part a)</u> We will plug in in the values of Cd, d, A in the drag-force equation i.e. Fd = <em>1/2 * 0.06* 1.225 * 20</em> = 0.735 N. Now to find the power P we will use P = F . v i.e.<em> 0.735 * 41.66</em> = <u><em>30.62 W</em></u>

<em></em>

<u>Part b) </u>For this part the only thing that has fundamentally changed is the drag-coefficient Cd since it's now of a solid flat plate and not a banner. The drag-coefficient of a flat plate is approximately given as : Cd_fp = 1.28

Now we will plug-in our values into the same equations as above to determine drag-force and then power. i.e. Fd = <em>1/2 * 1.28 * 1.225 * 20</em> = 15.68 N. Using Fd to determine power, P = 15.68 * 41.66 = <u><em>653.225 W</em></u>

<u><em></em></u>

<u>Part c)</u> The main reason for such a huge power difference between two objects of same size was due to their differing drag-coefficients, as drag-coefficients are generally large for objects that are not of a streamlined shape and leave a large wake (a zone of low air pressure behind them). The flat plate being solid had a large Cd where as the banner had a considerably low Cd and therefore a much lower power consumption

<u>Part d)</u> The power of a smooth sphere can be calculated in the same manner as the above two. We just have to look up the Cd of a smooth sphere which is found to be around 0.5 i.e. Cd_s = 0.5. Area of sphere A is given as : <em>pi* r^2 (r = d / 2).</em> Now using the same method as above:

Fd = 1/2 * 0.5 * 3.14 * 1.225 = 0.962 N

P = 0.962 * 41.66 = <u><em>40.08 W</em></u>

4 0
3 years ago
Differences between <br>hor<br>rse<br>and horse​
kenny6666 [7]
The proper difference between hor Rse and horse is both shows the same thing that is the horse
5 0
3 years ago
Read 2 more answers
Sonar signals and infrared light are are used to send messages to submarines deep under water. If we compare the two signals, wh
WARRIOR [948]
What are the statement choices?
6 0
3 years ago
A Carnot engine operates between temperature levels of 600 K and 300 K. It drives a Carnot refrigerator, which provides cooling
KATRIN_1 [288]

Explanation:

Formula for maximum efficiency of a Carnot refrigerator is as follows.

      \frac{W}{Q_{H_{1}}} = \frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{1}}} ..... (1)

And, formula for maximum efficiency of Carnot refrigerator is as follows.

     \frac{W}{Q_{C_{2}}} = \frac{T_{H_{2}} - T_{C_{2}}}{T_{C_{2}}} ...... (2)

Now, equating both equations (1) and (2) as follows.

 Q_{C_{2}} \frac{T_{H_{2}} - T_{C_{2}}}{T_{C_{2}}} = Q_{H_{1}} \frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{1}}}        

        \gamma = \frac{Q_{C_{2}}}{Q_{H_{1}}}

                    = \frac{T_{C_{2}}}{T_{H_{1}}} (\frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{2}} - T_{C_{2}}})

                    = \frac{250}{600} (\frac{(600 - 300)K}{300 K - 250 K})

                    = 2.5

Thus, we can conclude that the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load") is 2.5.

4 0
3 years ago
Other questions:
  • When the power goes off, Jack does not have a flashlight so he uses a glow stick to provide light. He is not very satisfied with
    11·1 answer
  • a circuit contains 2 ohm and 4 ohm resistors connected in parallel, find the total resistance &amp; the amount of current in eac
    8·1 answer
  • What is the relationship between the size of a predator population and the size of a prey population
    10·1 answer
  • The design phase in which a building project's basic functional requirements are first laid out (square footage, utility and equ
    7·1 answer
  • 8.)The potential energy of a 40-kg cannonball is 14000 J. How high was the cannon ball to have this much potential energy?
    6·1 answer
  • Which best describes the relationship between the frequency, wavelength, and speed of a wave as the wave travels through differe
    5·1 answer
  • What is the net force on this object?​
    5·1 answer
  • Air enters a nozzle steadily at 2.21 kg/m3 and 40 m/s and leaves at 0.752 kg/m3 and 180 m/s. If the inlet area of the nozzle is
    10·1 answer
  • Kevin was setting the table for thanksgiving dinner at his house. He had bought different set of knives spoons and forks from th
    10·1 answer
  • C1=4F, C2=4F, C3=2F, C4=4F, C5= 9.2 F. Calculate the equivalent capacitance
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!