mass of iron block given as

density of iron block is

now the volume of the iron piece is given as


Now when this iron block is complete submerged in oil inside the beaker the buoyancy force on the iron block will be given as

here we know that
= density of liquid = 916 kg/m^3


Now for the reading of spring balance we can say the spring force and buoyancy force on the block will counter balance the weight of the block at equilibrium



So reading of spring balance will be 16.45 N
Now for other scale which will read the normal force of the surface we can write that normal force on the container will balance weight of liquid + container and buoyancy force on block



So the other scale will read 36.47 N
Your answer will be (B) - intense pressure.
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
As per the question, the velocity of the airplane [v] = 660 miles per hour.
The total time taken by airplane [t] = 3.5 hours.
We are asked to determine the total distance travelled by the airplane during that period.
The distance covered [ S] by a body is the product of velocity with the time.
Mathematically distance covered = velocity × total time
S = v × t
= 660 miles/hour ×3.5 hours
= 2310 miles.
Hence, the total distance travelled by the airplane in 3.5 hour is 2310 miles.
Answer: The major challenges are as
1) understanding of the plasma: Plasma is a soup like mixture of subatomic particles of different atoms nuclei and electrons that are shattered apart by the temperature at which plasma is formed. further research is needed to understand the behavior of plasma so that it can be put to a proper use.
2) Confinement of plasma: Once we get the plasma we need to hold it so that we can obtain heat from it to drive a steam turbine but the sheer temperature of plasma is in millions of Celsius thus currently making it impossible to confine conventionally. Scientists use a loop of electric and magnetic fields to keep it in circulatory like manner so that it can be studied.
3) finally to obtain electricity from the plasma it should be stable to produce electricity. But currently to obtain pressure, temperature so that we have a sustained supply is highly difficult in technical and economical aspects.
Inertial confinement: In order to get the nuclei of atoms close enough for fusion this type of method used compression of the nuclei into highly small volumes.This is accomplished by use of lasers which are directed towards the fuel pellets that implode and travel towards other nuclei making fusion possible. It's main advantage is that it requires lesser time to initiate fusion but the disadvantage being that a large power is used to fire the lasers and the lasers should all hit the small target.
Magnetic Confinement: In this method we use a magnetic and electric fields in a properly designed space to keep the plasma in motion. In motion the nuclei of the atoms come close enough to initiate fusion.It's advantage being less power is required to start the process as compared to inertial confinement and the disadvantage being that plasma confinement is currently not properly understood.