Answer:
The answer is A. on edgen.
Explanation:
A. adding in the boxes an arrow that points from Qh to Qc
Answer:
An apple hanging at a branch has potential energy due its position. It can be written as PE= mgh where m is the mass of the apple h is the distance between the apple and the ground and g is the acceleration due to gravity.
as the apple falls from the tree it loses its potential energy and gains kinetic energy due to the movement of the apple. Its kinetic energy will be given by KE= 1/2mv² where m is the mass of the apple and v is the speed with which the apple falls.
As the apple falls the height or the distance reduces and PE becomes reduces. But it gains Kinetic energy due to its speed.
But when the apple falls to the ground and comes to rest its kinetic energy is converted to potential energy.
thus the total energy remains the same. it changes from one form to the other but remains unaltered.
To solve this problem we will apply the concepts related to the balance of forces. We will decompose the forces in the vertical and horizontal sense, and at the same time, we will perform summation of torques to eliminate some variables and obtain a system of equations that allow us to obtain the angle.
The forces in the vertical direction would be,



The forces in the horizontal direction would be,



The sum of Torques at equilibrium,




The maximum friction force would be equivalent to the coefficient of friction by the person, but at the same time to the expression previously found, therefore


Replacing,


Therefore the minimum angle that the person can reach is 46.9°
Answer:
it would be 3
Explanation:
because you have to divide the length by the height of the incline.
The total momentum should come out to be <span>2.0 x 10^4 kilogram meters/second </span>