<span>When an object travels in a curved path, there must be a force acting toward the center of the circular trajectory. This force is called "centripetal force", and it cause an acceleration of the object, called "centripetal acceleration". The effect of this acceleration is that the velocity of the object changes in direction: however if the circular motion is uniform, the speed (=the magnitude of the velocity) does not change. In this case, the magnitude of the centripetal force is given by
</span>

<span>
where m is the mass of the object, v its velocity, and r the radius of the circular path.</span>
Answer:
2 N
Explanation:
From the question, it's given that
Mass m = 0.2 kg
Acceleration a = 10 m/s^2
The force a soccer goalie experience when stopping a ball will be equal to the force at which the ball is being kicked. This is
F = ma
Substitute all the parameters into the formula
F = 0.2 × 10
F = 2 Newton.
"The <span>ground is positively charged and the clouds are negatively charged " is the statement among the statements given in the question that </span><span>best explains the movement of electric current from the clouds to the ground during a lightning storm. The correct option among all the options that are given in the question is the third option or option "C". </span>
Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):

For the future, Put the right subject please, The answer is to protect us from harmful UV rays, Which include UVA, UVB, And UBC.