The roots of the polynomial <span><span>x^3 </span>− 2<span>x^2 </span>− 4x + 2</span> are:
<span><span>x1 </span>= 0.42801</span>
<span><span>x2 </span>= −1.51414</span>
<span><span>x3 </span>= 3.08613</span>
x1 and x2 are in the desired interval [-2, 2]
f'(x) = 3x^2 - 4x - 4
so we have:
3x^2 - 4x - 4 = 0
<span>x = ( 4 +- </span><span>√(16 + 48) </span>)/6
x_1 = -4/6 = -0.66
x_ 2 = 2
According to Rolle's theorem, we have one point in between:
x1 = 0.42801 and x2 = −1.51414
where f'(x) = 0, and that is <span>x_1 = -0.66</span>
so we see that Rolle's theorem holds in our function.
Stop asking questons we are pretty much telling you the answer figure it out your self
Answer:
The statement is false.
Step-by-step explanation:
A parallelogram is a figure of four sides, such that opposite sides are parallel
A rectangle is a four-sided figure such that all internal angles are 90°
Here, the statement is:
"A rectangle is sometimes a parallelogram but a parallelogram is always a
rectangle."
Here if we found a parallelogram that is not a rectangle, then that is enough to prove that the statement is false.
The counterexample is a rhombus, which is a parallelogram that has two internal angles smaller than 90° and two internal angles larger than 90°, then this parallelogram is not a rectangle, then the statement is false.
The correct statement would be:
"A parallelogram is sometimes a rectangle, but a rectangle is always a parallelogram"
<span>Consider a angle â BAC and the point D on its defector
Assume that DB is perpendicular to AB and DC is perpendicular to AC.
Lets prove DB and DC are congruent (that is point D is equidistant from sides of an angle â BAC
Proof
Consider triangles ΔADB and ΔADC
Both are right angle, â ABD= â ACD=90 degree
They have congruent acute angle â BAD and â CAD( since AD is angle bisector)
They share hypotenuse AD
therefore these right angle are congruent by two angle and sides and, therefore, their sides DB and DC are congruent too, as luing across congruent angles</span>
ANSWER:
36 > 9 > 7 > 0 > -3 > -132
Hope it helps u!