Answer:
1s22s22p32d6
Explanation:
is a reasonable electron configuration
Answer: c. +4
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.




Here manganese is having an oxidation state of +4 called as cation and oxygen forms an anion with oxidation state of -2. Thus they combine and their oxidation states are exchanged to give
which written in simplest whole number ratios to give neutral 
Answer:
Greater
Greater
Explanation:
The amplitude of a wave is the height of the wave or the vertical displacement of the wave motion. We determine a wave amplitude usually by looking at the graph of the wave.
Amplitude is directly proportional to the energy of a wave. The higher the amplitude of a wave, the more its energy.
Frequency is the number of waves that passes a point at a particular instance of time. It is also directly proportional to the energy carried by a wave. The higher the frequency of a wave, the greater its energy.
18.The octet rule tells us that in every chemical
reactions, elements will either gain or lose electrons to attain the noble gas electron
configuration. This stable<span> electron configuration is known as the octet configuration
since it is composed of 8 valence. Oxygen’s electron configuration is 1s2 2s2
2p4. So when</span> oxygen reacts with
other elements to form compounds, it completes the octet configuration by
taking 2 electrons from the element
it reacts with
19. Actually pure metals are made up not of
metal atoms but rather of closely packed cations (positively charge particles).
These cations are then surrounded by a pack of mobile valence electrons which
drift from one part of the metal<span> to
another. This is called metallic bond.</span>
20. This is the
energy which is needed to break a single bond. When the dissociation energy is
large, this means that the compound is more stable. Since carbon to carbon
bonds have high dissociation energy, therefore they are not very reactive.
21. Network solids are type of solids
in which the atoms are covalently bonded to one another, so they are very
stable. It takes higher temperature to melt them because breaking these
covalent bonds required greater energy. Some examples are:
- Diamond
<span>-Silicon Carbide</span>
It’s a structure of nucleic acids and protein that can be found in the nucleus; it carries genetic information through genes