LiF or lithium fluoride is the non covalent molecule or ionic compound.
Option 3.
<h3><u>Explanation:</u></h3>
Covalent molecules are those molecules which do have actual bonds between the atoms present in the molecule by sharing of the electrons. But in ionic molecules, there's no actual bonds between the atoms, but the oppositely charged ions are attracted towards each other by means of electrostatic force of attraction.
The molecules that are formed by the atoms with high electronegativity and electropositivity are actually ionic because the atoms with high electronegativity are able to actually gain electron readily and the atoms with high electropositivity are actually ready to give the electrons to the electronegative elements.
Lithium is highly electropositive and fluoride is highly electronegative. So they establish an ionic bond. But other molecules like fluorine molecule has both the electronegative elements, Carbon monoxide has carbon which isn't electropositive highly, and ammonia has hydrogen which isn't electropositive.
So lithium fluoride is the ionic compound.
Yes you do cause its more explanation to
<span />
<h3>
Answer:</h3>
0.89 J/g°C
<h3>
Explanation:</h3>
Concept tested: Quantity of heat
We are given;
- Mass of the aluminium sample is 120 g
- Quantity of heat absorbed by aluminium sample is 9612 g
- Change in temperature, ΔT = 115°C - 25°C
= 90°C
We are required to calculate the specific heat capacity;
- We need to know that the quantity of heat absorbed is calculated by the product of mass, specific heat capacity and change in temperature.
That is;
Q = m × c × ΔT
- Therefore, rearranging the formula we can calculate the specific heat capacity of Aluminium.
Specific heat capacity, c = Q ÷ mΔT
= 9612 J ÷ (120 g × 90°C)
= 0.89 J/g°C
Therefore, the specific heat capacity of Aluminium is 0.89 J/g°C
Answer:
Molarity = 0.4M
Explanation:
Molar mass of NaOH (M)= 40
m= 8g, V= 500ml=0.5L
n= m/M=[8/40]= 0.2mol
Applying
n= CV
0.2= C×0.5
C= 0.4M
Answer:
The fundamental principle involves the formation of equilibrium and separation into distillate and bottoms governed by the equilibrium composition curve , number of stages and the purity with which the distillate is required.
Explanation:
Distillation is a type of the separation process by physical means of a mixture on basis of its difference in boiling point or vapor pressure .
Where we can just heat the mixture and separate out the components i.e the component with lower boiling point will form vapor easily and can be later condensed whereas the component with higher boiling point will remain as residue.
In case of a distillation column the same principle is applied at different stages to separate multiple components .The stages are known as trays or plates . In general , there is a certain liquid on each of the plate, and the arrangements are made for the ascending vapors to pass through the liquid and make contact with it . The fundamental principle involves the formation of equilibrium and separation into distillate and bottoms governed by the equilibrium composition curve , number of stages and the purity with which the distillate is required.