Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).
Answer:
The mass of NaCl is 0.029 grams
Explanation:
Step 1: Data given
Molecular weight of NaCl = 58.44 g/mol
Volume of solution = 100 mL = 0.100 L
Molarity = 0.0050 M
Step 2: Calculate moles NaCl
Moles NaCl = molarity * volume
Moles NaCl = 0.0050 M * 0.100 L
Moles NaCl = 0.00050 moles
Step 3: Calculate mass NaCl
Mass NaCl = moles NaCl * molar mass NaCl
Mass NaCl = 0.00050 moles * 58.44 g/mol
Mass NaCl = 0.029 grams
The mass of NaCl is 0.029 grams
B. The partial pressure of N2 is 101 kPa
<h3>Further explanation</h3>
Given
volume = 22.4 L
1.0 mol of nitrogen and 2.0 mol of hydrogen at 0°C
Required
Total pressure and partial pressure
Solution
Ideal gas law :
PV = nRT
n total = 3 mol
T = O °C + 273 = 273 K
P = nRT/V
P = 3 x 0.08205 x 273 / 22.4
P total = 3 atm = 303,975 kPa
P Nitrogen = 1/3 x 303.975 = 101.325 kPa
P Hydrogen = 2/3 x 303.975 = 202.65 kPa
Answer:The molar mass of atoms of an element is given by the standard relative atomic mass of the element multiplied by the molar mass constant, 1 × 10−3 kg/mol = 1 g/mol.
Explanation:
Moles of N2O5 = moles of NO2 * ( 2 moles of N2O5 / 4 moles of NO2