Answer:
Molarity of NaOH solution is 1.009 M
Explanation:
Molar mass of HCl is 36.46 g/mol
Number moles = (mass)/(molar mass)
So, 0.8115 g of HCl =
HCl = 0.02226 moles HCl
1 mol of NaOH neutralizes 1 mol of HCl.
So, if molarity of NaOH solution is S(M) then moles of NaOH required to reach endpoint is 
So, 
or, S = 1.009
So, molarity of NaOH solution is 1.009 M
hydrocarbon is ethene which is used to test for saturation and it undergoes addition reaction
Answer:
C₆H₁₂O₆ and O₂ are reactant.
CO₂ and H₂O are products.
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced, however carbon dioxide is released in this step.
It’s atomic mass is what the number means.
The concentration of mixed solution = 0.5 M
<h3>
Further explanation
</h3>
Given
0.5 M HCl
0.5 M Ca(OH)₂
Required
The concentration
Solution
Molarity from 2 solutions :
Vm Mm = V₁. M₁ + V₂. M₂
m = mixed solution
V = volume
M = molarity
V = mixed volume
1 = solution 1
2 = solution 2
Vm = V₁+V₂
Equal volumes⇒V₁=V₂, and Vm = 2V, then equation becomes :
2V.Mm = V(M₁+M₂)
2V.Mm = V(0.5+0.5)
Mm=0.5 M