1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
8

What is the equation of the line that is parallel to the line y - 1 = 4(x + 3) and passes through the point (4, 32)?

Mathematics
2 answers:
Monica [59]3 years ago
7 0

Answer:

y = 4x + 16

Step-by-step explanation:

y - 1 = 4(x + 3)

Has a slope of 4

y = 4x + c

32 = 4(4) + c

32 - 16 = c

c = 16

y = 4x + 16

Scilla [17]3 years ago
7 0
The answer is letter D
y=4x+16
You might be interested in
The ratio of boys to girl in a certain class is 4:7. if there are 33 students in the class, how many of them are girls.
Elden [556K]
Your answer is that 21 are girls
7 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
When should you use dot plots and why?
MariettaO [177]
Dot plots are used for continuous, quantitative, univariate data. They can be also used for finding outliers, compare distributions, locate the central tendency of your data, etc…
3 0
2 years ago
Write the fraction 7/10 as a sum of fraction three different ways
LUCKY_DIMON [66]
A . 2/10 + 5/10= 7/10
B. 3/10 + 4/10= 7/10
C. 6/10 + 1/10 =7/10
4 0
4 years ago
The upper-left coordinates on a rectangle are (-6,0)(−6,0)left parenthesis, minus, 6, comma, 0, right parenthesis, and the upper
nikklg [1K]

Answer:

See attachment for rectangle

Step-by-step explanation:

Given

A = (-6,0)

B = (-4,0)

Area = 12

Required

Draw the rectangle

First, we calculate the distance between A and B using distance formula;

AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

So, we have:

AB = \sqrt{(-6 - -4)^2 + (0- 0)^2}

AB = \sqrt{(-2)^2 + (0)^2}

AB = \sqrt{4 + 0}

AB = \sqrt{4}

AB = 2

The above represents the length of the triangle.

Next, calculate the width using:

Length * Width = Area

2* Width = 12

Divide both sides by 2

Width = 6

This implies that, the width of the rectangle is 6 units.

We have:

A = (-6,0)

B = (-4,0)

Since A and B are at the upper left and right, then the ther two points are below.

6 units below each of the above point are:

C = (-6,0-6)\\ => C = (-6,-6)

D = (-4,0-6) => D = (-4,-6)

Hence, the points of the rectangle are:

A = (-6,0)

B = (-4,0)

C = (-6,-6)

D = (-4,-6)

<em>See attachment for rectangle</em>

6 0
3 years ago
Other questions:
  • Peggy delivers pizzas. She left the pizza parlor this evening and traveled 4 km east to deliver a pizza to the red house. Then s
    8·2 answers
  • Graph y= 2x-2 with the domain (1,2,3)
    11·1 answer
  • What is the anwser to the multiplication problem, 11x11??
    8·3 answers
  • What numbers are irrational. Square root of 45, square root of 64, square root of 21 , and square root of 21
    11·2 answers
  • Use the system of equations. Please show your steps and how you solved it!
    5·1 answer
  • Here is the math paper i was talking about
    6·1 answer
  • What is the simplest form of 6/27?
    8·1 answer
  • Luigi uses 39 cups of flour for every 6 pizzas he makes. Complete the table using equivalent ratios.
    13·1 answer
  • Can you help me fast!!
    5·2 answers
  • Prove the following trigonometric identities
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!