Answer:
16 °C
Explanation:
Step 1: Given data
- Provided heat (Q): 811.68 J
- Mass of the metal (m): 95 g
- Specific heat capacity of the metal (c): 0.534 J/g.°C
Step 2: Calculate the temperature change (ΔT) experienced by the metal
We will use the following expression.
Q = c × m × ΔT
ΔT = Q/c × m
ΔT = 811.68 J/(0.534 J/g.°C) × 95 g = 16 °C
By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.
<span>Based on the experience of the responder, to correctly calculate measurements in real-world. Firstly is to avoid errors as much as possible. Errors are what makes your measurement invalid and unreliable. There are two types of error which is called the systematic error and the random error. Each error has different sources. Words that were mentioned –invalid and unreliable are very important key aspects to determine that your measure is truly accurate and consistent. Some would recommend using the mean method, doing three trials in measuring and getting their mean, in response to this problem.</span>
I thought the answer is d
Answer: The closeness, arrangement and motion of the particles in a substance change when it changes state. Materials are a store of internal energy , due to the motion of particles and the chemical bonds between them. When a substance is heated, its internal energy increases: the movement of its particles increases.
Explanation: