1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
2 years ago
5

The question is in the image

Physics
1 answer:
Rudik [331]2 years ago
4 0
I’m pretty sure it’s circuit three.

You might be interested in
David is driving a steady 28.0 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady
rodikova [14]

Answer:

Explanation:

Let t represent the time for Tina to catch David.

Hence, considering the equation of linear motion S = ut + 1/2at^2..... 1

For David u = 28.0 m/s where 'a' is set to nought

S = ut

S = 28t.......2

For Tina consider equation 1

Where acceleration = 2.90m/s^2 and u is set at nought

S = 1/2×2.90 m/s×t^2.......3

Equate 2 and 3

28t = 1.45t^2

Divide through by t

28 = 1.45t

t = 28/1.45

t = 19.31seconds

Now put the value of t into equation 3

S = 1/2×2.90 m/s×t^2.......3

= 1.45×20×20

= 580m

Tina must have driven 580meters before passing David

Considering the equation of linear motion : V^2 = U^2+2as

Where u is set at nought

V^2 = 2as

V^2 = 2×2.9×580

V^2 = 3364

V = √3364

V = 58m/s

Her speed will be 58m/s

7 0
2 years ago
Which is true of the greenhouse effect?
Aleksandr [31]

Answer:

c is correct option thanks to brainly

3 0
3 years ago
Two basketballs of equal mass are rolling toward each other at constant velocities. The first basketball (B1) has a velocity of
slamgirl [31]

v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)

<u>Explanation:</u>

Velocity of B₁ = 4.3m/s

Velocity of B₂ = -4.3m/s

For perfectly elastic collision:, momentum is conserved

m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2

where,

m₁ = mass of Ball 1

m₂ = mass of Ball 2

v₁ = initial velocity of Ball 1

v₂ = initial velocity of ball 2

v'₁ = final velocity of ball 1

v'₂ = final velocity of ball 2

The final velocity of the balls after head on elastic collision would be

v'_2 = \frac{2m_1}{m_1+m_2} v_1 - \frac{m_1-m_2}{m_1+m_2} v_2\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} v_1 + \frac{2m_2}{m_1+m_2} v_2

Substituting the velocities in the equation

v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.

5 0
2 years ago
Why did the Founding Fathers want to include a bill of rights in the U.S.
sergey [27]

Answer:

Its A

Explanation:

Thats because federalists wanted to take away rights. But the fathers wanted to definitely ensure that each person had equal rights and liberty.

7 0
3 years ago
A rotating object starts from rest at t = 0 s and has a constant angular acceleration. At a time of t = 2.5 s the object has an
Evgesh-ka [11]

Answer:

52 rad

Explanation:

Using

Ф = ω't +1/2αt²................... Equation 1

Where Ф = angular displacement of the object, t = time, ω' = initial angular velocity, α = angular acceleration.

Since the object states from rest, ω' = 0 rad/s.

Therefore,

Ф = 1/2αt²................ Equation 2

make α the subject of the equation

α = 2Ф/t².................. Equation 3

Given: Ф = 13 rad, t = 2.5 s

Substitute into equation 3

α = 2(13)/2.5²

α = 26/2.5

α = 4.16 rad/s².

using equation 2,

Ф = 1/2αt²

Given: t = 5 s, α = 4.16 rad/s²

Substitute into equation 2

Ф = 1/2(4.16)(5²)

Ф = 52 rad.

6 0
2 years ago
Read 2 more answers
Other questions:
  • Scientists can organize their obervations using
    15·1 answer
  • Suppose you are playing hockey on a new-age ice surface for which there is no friction between the ice and the hockey puck. You
    5·1 answer
  • What percentage of Sun-like stars exists in multiple-star systems?
    8·2 answers
  • A forklift raises a crate weighing 8.35 × 102 newtons to a height of 6.0 meters. What amount of work does the forklift do?
    7·2 answers
  • A conventional current of 7 A runs clockwise in a circular loop of wire in the xy plane, with center at the origin and with radi
    10·1 answer
  • A 2.73 kg cylindrical grinding wheel with a radius of 31 cm rotates at 1416 rpm. What is its angular momentum? Answers:
    13·1 answer
  • WILL GIVE BRAINLIEST!
    13·1 answer
  • An astronomy class is so excited by the discovery of planets around other stars that they decide to do a library exhibit on the
    7·1 answer
  • A crate weighing 523 N rests on a plank that makes a 22.0  angle with the ground. Find the components of the crate's weight for
    10·1 answer
  • An electric pole shown in the figure below supports a power line that passes through it. A cable tied to the pole at B passes th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!