Answer:
B
Explanation:
Because it has to do with the darker the object the better it emitts heat.
Explanation:
The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves: vw = fλ, where vw is the speed of sound, f is its frequency, and λ is its wavelength.
Answer:
option B
Explanation:
When a body is immersed in liquid there will be two force is acting on the body.
First one force acting downward due to weight of the body.
And the second force acting on the object will be buoyant force.
If the object is not in equilibrium the apparent weight will be equal to net force acting on the object.

W is the weight of the object acting downward
Fb is the buoyancy force acting upward on the object.
Hence, the correct answer is option B
Answer:
14 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, when the ball is thrown from the ground, it has only kinetic energy, which is given by

where m = 5.9 kg is the mass of the ball and v is its initial speed.
As the ball goes up, its speed decreases, so its kinetic energy decreases and converts into gravitational potential energy. When the ball reaches its maximum height, the speed has become zero, and all the kinetic energy has been converted into gravitational potential energy, given by:

where g = 9.8 m/s^2 is the gravitational acceleration and h = 10 m is the maximum height reached by the ball.
Since we can ignore air resistance, energy must be conserved, so the initial kinetic energy must be equal to the final potential energy of the ball, so we can write:

And we can solve the equation to find v, the initial speed of the ball:

<span>The vertical axis represents the velocity of the object</span>