The first positively essential requirement is that
you absolutely have to know what 'a' and 'b' are.
I have no clue, so this is as far as I can go.
A. When we convert 37.4 mL to ML, the result obtained is 3.74×10¯⁸ ML
B. When we convert 689 km/hr to m/s, the result obtained is 191.39 m/s
C. When we convert 34.5 m² to mm², the result obtained is 3.45×10⁷ mm²
<h3>A. How to convert millimeters (mL) to megaliter (ML)</h3>
- Volume (mL) = 37.4 mL
- Volume (ML) =?
1 mL = 1×10¯⁹ ML
Therefore,
37.4 mL = 37.4 × 1×10¯⁹
37.4 mL = 3.74×10¯⁸ ML
Thus, 37.4 mLis equivalent to 3.74×10¯⁸ ML
<h3>B. How to convert 689 km/hr to m/s</h3>
Conversion scale
3.6 Km/hr = 1 m/s
Therefore,
689 km/hr = 689 / 3.6
689 km/hr = 191.39 m/s
Thus, 689 km/hr is equivalent to 191.39 m/s
<h3>C. How to convert 34.5 m² to mm²</h3>
Conversion scale
1 m² = 1×10⁶ mm²
Therefore,
34.5 m² = 34.5 × 1×10⁶
34.5 m² = 3.45×10⁷ mm²
Thus, 34.5 m² is equivalent to 3.45×10⁷ mm²
Learn more about conversion:
brainly.com/question/2139943
#SPJ1
Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:

