Molarity is defined as the number of moles of solute in 1 L of solution
molarity of stock solution to be prepared - 100 x 10⁻³ mol/L
volume of stock solution to be prepared - 1.2 mL
Therefore number of moles in 1.2 mL - 100 x 10⁻³ mol/L x 1.2 x 10⁻³ L
number of moles of drug - 1.2 x 10⁻⁴ mol
mass of drug required - 1.2 x 10⁻⁴ mol x 181.6 g/mol = 21. 8 mg
21.8 g of drug is required to make the stock solution
Hg + O2 --> HgO + O
Note that Mercury has a variable valency.
Answer:
elements in same group have same valence electron.
period of element is equal to valence shell
Explanation:
if the elements are in a same group then they will be having same number of valence electron.
the period of an element in periodic table is equal to the valence shell of the element. that is if the valence electron are in 3 rd shell then the element will be in third period.
Answer:
false
Explanation:
because elements never exist in nature as single isotopes they are always combined
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////