180 x 0.06 = 10.80; $10.80.
Hope this helps,
♥Nikki♥
What is it?
The IQR describes the middle 50% of values when ordered from lowest to highest. To find the interquartile range (IQR), first find the median (middle value) of the lower and upper half of the data. These values are quartile 1 (Q1) and quartile 3 (Q3). The IQR is the difference between Q3 and Q1.
How do you find IQR?
<em>Step 1: Put the numbers in order. ...</em>
<em>Step 2: Find the median. ...</em>
<em>Step 3: Place parentheses around the numbers above and below the median. Not necessary statistically, but it makes Q1 and Q3 easier to spot. ...</em>
<em>Step 4: Find Q1 and Q3. ...</em>
<em>Step 5: Subtract Q1 from Q3 to find the interquartile range.</em>
X=-1/29 it’s divided the 1 /29
The common ratio in the geometric sequences 2
<span />
Answer:
θ = (60° )
Step-by-step explanation:
Using the identity
sin²x + cos²x = 1 ⇒ sin²x = 1 - cos²x
Given
cos²θ - sin²θ = 2 - 5cosθ
cos²θ - (1 - cos²θ) = 2 - 5cosθ
cos²θ - 1 + cos²θ = 2 - 5cosθ
2cos²θ - 1 = 2 - 5cosθ ( subtract 2 - 5cosθ from both sides )
2cos²θ + 5cosθ - 3 = 0 ← in standard form
(cosθ + 3)(2cosθ - 1) = 0 ← in factored form
Equate each factor to zero and solve for θ
cosθ + 3 = 0
cosθ = - 3 ← not possible as - 1 ≤ cosθ ≤ 1
2cosθ - 1 = 0
cosθ = , so
θ = ( ) = ( or 60° )