Answer:
best explanation of this is sentence B
Explanation:
The radiation emission of the bodies is given by the expression
P = σ A e T⁴
Where P is the power emitted in watts, σ is the Stefan-Boltzmann constant, A is the surface area of the body, e is the emissivity for black body e = 1 and T is the absolute body temperature in degrees Kelvin.
When the values are substituted the power is quite high 2.5 KW, but the medium surrounding the box also emits radiation
T box ≈ T room
P box ≈ P room
As the two powers are similar and the box can absorbed, since it has the ability to emit and absorb radiation, as the medium is also close of the temperature of the box, the amount emitted is very similar to that absorbed, so the net change in energy is very small.
In the case that the box is much hotter or colder than the surrounding medium if there is a significant net transfer.
Consequently, the best explanation of this is sentence B
Answer:
D
Explanation:
Why is because the merry go round wont do anything cause he will stay the same speed.
<u>The question does not provide enough information to complete the answer, so I'll assume the needed data to help you to solve your own problem</u>
Answer:
<em>The fly should need to move at 9,534.6 m/s to have the same kinetic energy as the automobile</em>
Explanation:
<u>Kinetic Energy
</u>
Is the capacity of a body to do work due to its speed and is computed by

We are not given enough data to compare the kinetic energy of the fly with that of the automobile. We'll assume the following characteristics:


So its kinetic energy is


The mass of the fly is

To have the same kinetic as the automobile:

Solving for 



The fly should need to move at 9,534.6 m/s to have the same kinetic energy as the automobile
d. natural gas is the answer
Answer:
The correct answer is:
a) remain where it is released
Explanation:
The concept of density seeks to measure the weight of an object in relation to its size. It is the measure of how packed together the particles of that object are. An object placed in a liquid displaces a certain volume of the liquid, based on the relative density of the object and the liquid.
If an object is less dense than a liquid in which it is placed, it displaces a smaller volume of the liquid than its volume, hence only some part of the object will be seen to be under the liquid, the other part will float.
If an object is denser than the liquid in which it is placed, it displaces a larger volume of the liquid than its own volume, making the object to sink and is submerged, sometimes to the bottom of the liquid, but mostly below the point at which it was released.
Finally, if the density of an object and the liquid into which it is submerged is the same. the object's mass per unit volume is the same as the liquid's mass per unit volume, hence the weight and force created due to density will balance and cancel each other out hence making the object to remain where it was submerged.