Electronegativity is the measure of the tendency of an atom to attract a bonding pair of electrons. In the periodic table, electronegativity increase across the period because the charges on the nucleus increase. The correct arrangement for the atoms given above is as follows
Flourine and Francium
Chlorine and Cesium
Nitrogen and Sodium
Phosphorus and Lithium
Nitrogen and Sulphur.
The answer to the question '<span>In a series of undisturbed rock layers where shale lies between sandstone below and limestone above, the __." would be limestone is youngest. Out of all the rock layers, the limestone is dated to be the youngest of all.</span>
The springs stored energy is transferred to the cube as kinetic energy and then by the slop the KE is converted to height energy.
<span>0.5 . k . x^2 = 0.5 . m . v^2 = m . g . ∆h </span>
<span>0.5 . 50 . (0.1^2) = 0.05 . 9.8 . ∆h </span>
<span>∆h = 0.51 m = 51 cm </span>
<span>This is the height gained </span>
<span>Distance along the slope = ∆h / sin 60 = 0.589 = 59 cm </span>
<span>In the second case, the stored spring energy is converted into height energy AND frictional heat energy. </span>
<span>The height energy is m . g . d sin 60 where d is the distance the cube moves along the slope. </span>
<span>The Frictional energy converted is F . d </span>
<span>F ( the frictional force ) = µ . N </span>
<span>N ( the reaction to the component of the gravity force perpendicular to the surface of the slope ) = m . g . cos60 </span>
<span>Total energy converted </span>
<span>0.5 . k . x^2 = (m . g . dsin60) + (µ . m . g . cos60 . d ) </span>
<span>Solve for d </span>
<span>d = 0.528 = 53 cm</span>
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12