Answer:
Specific gravity is the density of asubstance divided by the density of water. Since (at standard temperature and pressure) water has a density of 1 gram/cm3, and since all of the units cancel, specific gravity is usually very close to the same value as density(but without any units).
<span>The solid lines between N and Mg are actually ionic bonds. N has 5 valence electrons (2 of which are paired). Of the 3 that are unpaired, 2 are part of covalent bonds with adjacent carbon atoms. N accepts an extra electron to complete its octet, but gets a formal charge of -1. This allows for formation of an ionic bond with Mg, which is +2. Two of these charged N atoms therefore neutralize the charge of the central Mg. As for the coordinate (dative) covalent bonds, Mg has empty orbitals - the ionic bonds with the charged N atoms give it only 4/8 possible valence electrons.
The other two N atoms (dotted lines) have a formal charge of 0 since they form three covalent bonds with adjacent carbon atoms, but they still have a lone pair. Therefore, just to improve stability, each of these N atoms can "donate" its lone pair to Mg in order to complete its octet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
The solid form of a substance is usually more dense than its
liquid and gaseous forms. Similarly the liquid form is usually more dense than
the gaseous form. Ice floating in water is an exception that breaks the general
density rule. So option “A” is the correct option in regards to the given
question. In case of ice formation, actually the density of water decreases by
about 9%. This is the main reason behind ice floating in water. Pure water has
the maximum density at 4 degree centigrade.
Temperature is a measure of thermal energy. Like, how hot or cold something is. When testing a temperature, you would use a <em>thermometer</em>. A thermometer measures how hot or cold something is.
Hope this helps. :)