The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
Answer:
A. Na₂SO₄ and HCl
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
Like dissolves like simply means that molecules of substances having similar chemical properties dissolve in each other
Explanation:
A. Ionic substances like Na₂SO₄ are composed of charged particles called ions. These ions are either positively charged or negatively charged, therefore, they are attracted to substances of opposite charges. Also, polar molecules like HCl contains two oppositely charged ends. A polar solvent consists of molecules with two oppositely charged ends, therefore, ionic substances as well polar substances dissolve in them according to the concept of like dissolves like.
Gasoline being non-polar will only dissolve in like substances, polar solvents.
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
The statement "Like dissolves like" simply means that molecules of substances having similar chemical properties dissolve in each other. For example gasoline, a non-polar substance will dissolve only in a non-polar solvent like kerosene. Also, HCl, a polar molecule will dissolve in a polar solvent like water.
The buoyancy of an object is dictated by its density. So let us calculate for density, where:density = mass / volume
Calculate the volume first of a solid cube:volume = (6 cm)^3 = 216 cm^3 = 216 mL
Therefore density is:density = 270 g / 216 mLdensity = 1.25 g / mL
Therefore this object will float in the layer in which the density is more than 1.25 g / mL.
Answer:
P2 = 900 mmHg.
Explanation:
Given the following data;
Initial pressure = 450 mmHg
Initial temperature = 100°C
Final temperature = 200°C
To find the final pressure, we would use Gay Lussac's law;
Gay Lussac states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;

Making P2 as the subject formula, we have;


Final pressure, P2 = 900 mmHg.
Answer:
Would it be<em><u> 7.69 seconds</u></em>?
Explanation: