Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles

Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles
That would be true, since most other stats include helium, calcium, etc
Explanation:
Some Rules Regarding Oxidation Numbers:
- Hydrogen has oxidation number of + 1 except in hydrides where it is -1
- Oxygen has oxidation number of -2 except in peroxides where it is -1
- Some elements have fixed oxidation numbers. E.g Halogen group elements has oxidation number of -1
- Oxidation number of a compound is the sum total of the individual elements and a neutral compound has oxidation number of 0.
A. HI
Hydrogen has oxidation of + 1
Oxidation number of I:
1 + x = 0
x = -1
B. PBr3
Br has oxidation number of - 1
Oxidation number of Pb:
x + 3 (-1) = 0
x = + 3
C. KH
Hydrogen has oxidation of + 1
Oxidation number of K:
1 + x = 0
x = -1
D. H3PO4
Hydrogen has oxidation number of + 1
Oxygen has oxidation number of -2
Oxidation number of P:
3(1) + x + 4(-2) = 0
3 + x - 8 =0
x = 5
The solution for problem 36 is in the picture attached. I am 80% sure it’s correct.
When oxygen and hydrogen combine they form a polar covalent bond