Answer:
ΔH= 3KJ
Explanation:
The total heat absorbed is the total energy in the process, and that is in form of entalpy.
ΔH = q + ΔHvap, where q is the heat necessary for elevate the temperature of dietil ether. Suppose the initial temperature is room temperature (25ºC=298 K), then
q= 10g x2.261 J/gK x(310 K - 298K)= 271.32 J= 0.3 kJ
Then
ΔHvap = 10g C4H10O x (1 mol C4H10O/74.12 g C4H10O) x( 15.7 KJ/ 1 mol C4H10O) = 2.12 KJ
ΔH= 2.5KJ ≈ 3KJ
Answer:
Large molecules tend to have greater boiling points because the London dispersion forces are stronger within.
Explanation:
Answer:
160.3 g S
Explanation: there you go
The metric system prefix for the above quantity would be D. Micro. Which is 10^-6.
Answer:
The new acceleration becomes twice the pervious acceleration.
Explanation:
Given that,
Mass of the rock, m = 3 kg
Force, F = 1 N
We know that the force acting on an object is given by :
F = ma
a is acceleration of the rock
Put m = 3 kg and F = 1N,

If the force is doubled, F' = 2 N
So,
F'=ma'

So, the new acceleration becomes twice the initial acceleration.