Buoyancy from water. Buoyancy is an upward force on an object immersed in a fluid (i.e., a liquid or a gas), enabling it to float or at least to appear lighter.
Answer:
C. Plant A orbits its star faster than Plant B
Explanation:
Did it on study island
Answer:
Energy expenditure in K cals/min = 10 K cals /min (approximately)
Explanation:
As we know
Energy expenditure in Kcal/min= METs x 3.5 x Body weight (kg) / 200
Given is METs=7.6
Weight of Jazz= 172lb=78.02kg
putting the values in formula,
Energy expenditure in K cals/min= 7.6 x 3.5 x 78.02 / 200
=10.38 K cals /min
=10 K cals /min (approximately)
Therefore, Energy expenditure in K cals/min by Jazz will be approximately 10 K cals /min
Answer:
v = 5.15 m/s
Explanation:
At constant velocity, the cable tension will equal the car weight of 984(9.81) = 9,653 N
As the cable tension is less than this value, the car must be accelerating downward.
7730 = 984(9.81 - a)
a = 1.95 m/s²
kinematic equations s = ut + ½at² and v = u + at
-5.00 = u(4.00) + ½(-1.95)4.00²
u = 2.65 m/s the car's initial velocity was upward at 2.65 m/s
v = 2.65 + (-1.95)(4.00)
v = -5.15 m/s