Answer:
Q = 1057.5 [cal]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat energy [cal]
Cp = specific heat = 0.47 [cal/g*°C]
T_final = final temperature = 32 [°C]
T_initial = initial temperature = 27 [°C]
m = mass of the substance = 450 [g]
Now replacing:
![Q=450*0.47*(32-27)\\Q=1057.5[cal]](https://tex.z-dn.net/?f=Q%3D450%2A0.47%2A%2832-27%29%5C%5CQ%3D1057.5%5Bcal%5D)
Um this doesn't make since to me since you did not clearly state your awnser
Answer:
Current, I = 2.3 A
Explanation:
We have,
Voltage of the battery in a circuit is 9 volts
Resistance of the circuit is 4 ohms
It is required to find the current in a circuit. When the voltage and the resistance of the circuit is given then we can find the current in it is given by Ohm's law as :

I is electric current

or
I = 2.3 A
So, the current in the circuit is 2.3 A.
Answer:
1) The speed of sound increases
2) 440 Hz
3) 29°C
4) 17°C
5) 434 Hz
6) 12 m/s
7) 17.3 m
Explanation:
1) The speed of sound increases
2) V = f×λ
f = V/λ = 343/0.78 = 439.744 ≈ 440 Hz
3) V = f×λ
512 × 0.68 = 348.16 m/s
348.16 - 331 = 17.16
T = 17.16/0.6 = 28.6 ≈ 29°C
4) Increase in speed = 350 - 340 = 10
Increase in temperature = 10/0.6 = 16.67° ≈ 17°C
5) f = V/λ = 343/0.79 = 434 Hz
6) 331 + 0.6×30 - (331 × 0.6 ×10) = 12 m/s
7) V = 331 + 0.6×25 = 346m/s
λ = 346/20 = 17.3 m
Answer:
30 seconds
Explanation:
A = A02^-(t/hl)
--> ln(A/A0) = -(t/hl)ln2
solving for hl,
hl = -t x ln2 /ln(A/A0)
= -(60 min)xln2/ln(50/200)
= 0.5 min or 30 seconds