<span>If the swimmer is swimming perpendicular to the current, it will take her 66m / 0.42 m/s = 157.14 seconds to cross the river. At the same time, the current will be taking her downstream at a rate of 0.32 m/s. So, when she reaches the opposite bank, her total downstream distance traveled will have been 0.32*157.14 = 50.28 meters.</span>
Based on the sped of the waves and the tension as well as the needed wave speed, the required tension is 13.5 N.
<h3>What is the required tension?</h3>
Given the initial tension and speed, the tension that is required can be found by the formula:
= Initial tension x (Required speed / Initial speed)²
Solving gives:
= 6 x (30 / 20)²
= 6 x 9/4
= 13.5 N
In conclusion, the tension required is 13.5N.
Find out more on the tension on a wire at brainly.com/question/14290894.
#SPJ4
Answer:
No.
Explanation:
Because the acceleration of falling objects is constant and is not affected by mass
Answer:
Mechanical energy = 3.92 J
exactly 3.92 j
Explanation:
As we know that mechanical energy is sum of kinetic energy and potential energy of the system
so here we can say that mechanical energy is sum of kinetic energy of ball and its potential energy
Since ball is at rest so kinetic energy of the ball must be ZERO
Now for potential energy we know that

now we know
m = 0.2 kg
h = 2 m
now for potential ene'rgy


so mechanical energy is given as
Mechanical Energy = 3.92 + 0 = 3.92 J