Answer:
0.56 M
Explanation:
Step 1: Given data
- Rate constant (k): 0.035 s⁻¹
- Initial concentration of the reactant ([A]₀): 1.5 M
Step 2: Calculate the amount of reactant ([A]) after 28 seconds
For a first-order kinetics, we will use the following expression.
ln [A] = ln [A]₀ - k × t
ln [A] = ln 1.5 - 0.035 s⁻¹ × 28 s
[A] = 0.56 M
For this question, I think it is the other way around. It is true that chloroacetic acid is stronger in strength than acetic acid. Acid strength is measured as the equilibrium constant of the reaction <span>HA -----> H+ + A-
</span><span> In acetic acid, the anion produced by dissociation is CH3-COO-; in chloroacetic acid it is CH2Cl-COO-. Comparing the two, in the first one the negative charge is taken up mostly by the two oxygen atoms. In the second there is also an electronegative chlorine atom nearby to draw more charge towards itself. Therefore, the charge is less concentrated in the chloroacetate ion than it is in the acetate ion, and, accordingly, chloroacetic acid is stronger than acetic acid. </span>
Beta particles will bend toward the South Pole of the magnet.
Hope this helped!
Answer:
Let the mixture is X% by mass of CuSO
4
.5H
2
O and 100 - X % by mass of MgSO
4
.7H
2
O. 5.0 g of mixture will contain 0.05X g CuSO
4
.5H
2
O and 5.0 - 0.05X g MgSO
4
.7H
2
O
The molar masses of CuSO
4
.5H
2
O and MgSO
4
.7H
2
O are 249.7 g/mol and 246.5 g/mol respectively.
The number of moles of CuSO
4
.5H
2
O=
249.7
0.05X
=2.00×10
−4
X moles.
Explanation:
Pls mark it as branliest answere thanks
Explanation:
<u></u>
<u>-to determine how long ago two species of animals shared an ancestor</u>
<u></u>
The molecular lock describes a method which utilizes mutation rates for DNA over time, to determine the divergence of two species sharing common ancestry,due to evolution. Along with genetic drift, selective mating and natural selection, evolution may occur within populations due to spontaneous heritable changes to DNA, called mutations, over time.
Further Explanation:
During reproduction, other events, such as crossing over during mitosis and meiosis, mutations lead to increases in genetic variation. This variation refers to the genetic characteristics present within a species. Mutations may be either beneficial or deleterious; they are maintained within cells, as they form new traits called alleles. Beneficial mutations may confer traits that increase the fitness of a species, along with ensuring survival by conferring a protective advantage- these phenotypic differences between organisms are called adaptations.
Sequences of DNA make up genes which can have different forms called alleles. DNA, which makes up the genotype, is transcribed into mRNA and later translated into amino acids which are linked together by rRNA to form proteins which make up the phenotype of an organism. Mutations in DNA sequences affect the corresponding mRNA and thus the protein encoded.
Learn more about mutations at brainly.com/question/4602376
Learn more about DNA and RNA at brainly.com/question/2416343?source=aid8411316
#LearnWithBrainly