• Subtract first: 333 - 112 = 221
• Divide second: 221 ÷ 4(months) = 55.25
• Equation: (333 - 112) ÷ 4
Barb deposited $55.25 each month.
Hope this helps! :D
~PutarPotato
(x-8) ^ 2 = 121
(x-8) = + / - root (121)
x = 8 +/- root (121)
The solutions are:
x1 = 8 + root (121)
x2 = 8 - root (121)
2a ^ 2 = 8a-6
2a ^ 2-8a + 6 = 0
a ^ 2-4a + 3 = 0
(a-1) (a-3) = 0
The solutions are:
a1 = 1
a2 = 3
x ^ 2 + 12x + 36 = 4
x ^ 2 + 12x + 36-4 = 0
x ^ 2 + 12x + 32 = 0
(x + 4) (x + 8) = 0
The solutions are:
x1 = -8
x2 = -4
x ^ 2-x + 30 = 0
x = (- b +/- root (b ^ 2 - 4 * a * c)) / 2 * a
x = (- (- 1) +/- root ((- 1) ^ 2 - 4 * (1) * (30))) / 2 * (1)
x = (1 +/- root (1 - 120))) / 2
x = (1 +/- root (-119))) / 2
x = (1 +/- root (119) * i)) / 2
The solutions are:
x1 = (1 + root (119) * i)) / 2
x2 = (1 - root (119) * i)) / 2
The average american eats 147 pounds of french fries in 18 years
Answer:
The z-score for the 34-week gestation period baby is 0.61
Step-by-step explanation:
The formula for calculating a z-score is is z = (x-μ)/σ,
where x is the raw score,
μ is the population mean
σ is the population standard deviation.
We are told in the question that:
Babies born after a gestation period of 32-35 weeks have a mean weight of 2600 grams and a standard deviation of 660 grams. Also, we are supposing a 34-week gestation period baby weighs 3000grams
The z-score for the 34-week gestation period baby is calculated as:
z = (x-μ)/σ
x = 3000, μ = 2600 σ = 660
z = 3000 - 2600/660
= 400/660
=0.6060606061
Approximately, ≈ 0.61