Answer:
The following statements are correct.
1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.
Wrong statements:
1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.
Explanation:
<u>Answer:</u>
<em>Equivalence point and end point are terminologies in pH titrations and they are not the same.
</em>
<u>Explanation:</u>
In a <em>titration the substance</em> added slowly to a solution usually through a pippette is called titrante and the solution to which it is added is called titrand. In acid-base titrations acid is added to base or base is added to acid.the strengths of the <em>acid and base titrated</em> determines the nature of the final solution.
At equivalence point the <em>number of moles of the acid</em> will be equal to the number of moles of the base as given in the equation. The nature of the final solution determines the <em>pH at equivalence point. </em>
<em>A pH less than 7 will be the result if the resultant is acidic and if it is basic the pH will be greater than 7. </em>In a strong base-strong acid and weak base-weak acid titration the pH at the equivalence point will be 7 indicating <em>neutral nature of the solution.
</em>
Work = force x distance
F= 2.5
D= 3
Work = 2.5 x 3 =7.5
Work = 7.5 J
J=Jules (Jules is the unit uses to calculate work)
Answer:
The average impact force is 12000 newtons.
Explanation:
By Impact Theorem we know that impact done by the sledge hammer on the chisel is equal to the change in the linear momentum of the former. The mathematical model that represents the situation is now described:
(1)
Where:
- Average impact force, in newtons.
- Duration of the impact, in seconds.
- Mass of the sledge hammer, in kilograms.
,
- Initial and final velocity, in meters per second.
If we know that
,
,
and
, then we estimate the average impact force is:


The average impact force is 12000 newtons.