Answer:

Explanation:
From the Question we are told that:
Mass 
Coefficient of kinetic friction 
Generally the equation for Frictional force is mathematically given by



Generally the Newton's equation for Acceleration due to Friction force is mathematically given by



Therefore



To solve this problem we will apply the concept related to the electric field. The magnitude of each electric force with which a pair of determined charges at rest interacts has a relationship directly proportional to the product of the magnitude of both, but inversely proportional to the square of the segment that exists between them. Mathematically can be expressed as,

Here,
k = Coulomb's constant
V = Voltage
r = Distance
Replacing we have


Therefore the magnitude of the electric field is 
Answer:
hope it helps brainliest pls. and the answer is the one that is circled in red color.
Explanation:
Answer:
The rate of evaporation and the rate of condensation are the same.
Explanation:
I checked it myself on PennFoster
Hope This Helps!
Answer:
a) It is moving at
when reaches the ground.
b) It is moving at
when reaches the ground.
Explanation:
Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:
(1)
with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:
(2)
with m the mass and v the velocity.
Using (2) on (1):
(3)
In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):
(4)
Using (4) on (3):
(5)
That's the equation we're going to use on a) and b).
a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:


b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

Solving for initial velocity (when the boulder left the volcano):

