Answer:
Explanation:
You are going to lift and press down on the 200 N many times and move only a short distance. The reward is that slowly but surely you will lift a very heavy load -- one that cannot be managed any other way but by the hydraulic jack.
Answer:
3.71 eV
Explanation:
λ = Wavelength of light = 224 nm = 224 x 10⁻⁹ m
c = speed of electromagnetic wave = 3 x 10⁸ m/s
V₀ = stopping potential = 1.84 volts
W₀ = Work function of the metal = ?
Using the equation


= 5.94 x 10⁻¹⁹
= 3.71 eV
Answer:
22 N upward
Explanation:
From the question,
Applying newton's second law of motion
F = m(v-u)/t....................... Equation 1
Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact
Note: Let upward be negative and downward be positive
Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s
Substitute into equation 1
F = 0.14(-1-1.2)/0.014
F = 0.14(-2.2)/0.014
F = 10(-2.2)
F = -22 N
Note the negative sign shows that the force act upward
Answer:
λ = 102.78 nm
This radiation is in the UV range,
Explanation:
Bohr's atomic model for the hydrogen atom states that the energy is
E = - 13.606 / n²
where 13.606 eV is the ground state energy and n is an integer
an atom transition is the jump of an electron from an initial state to a final state of lesser emergy
ΔE = 13.606 (1 /
- 1 / n_{i}^{2})
the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon
DE = 13.606 (1/1 - 1/3²)
DE = 12.094 eV
let's reduce the energy to the SI system
DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J
let's find the wavelength is this energy, let's use Planck's equation to find the frequency
E = h f
f = E / h
f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴
f = 2.9186 10¹⁵ Hz
now we can look up the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 2.9186 10¹⁵
λ = 1.0278 10⁻⁷ m
let's reduce to nm
λ = 102.78 nm
This radiation is in the UV range, which occurs for wavelengths less than 400 nm.